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Abstract
We consider nonlinear parabolic stochastic PDEs on a bounded Lipschitz domain
driven by a Gaussian noise that is white in time and colored in space, with Dirichlet or
Neumannboundary condition.We establish existence, uniqueness andmoment bounds
of the random field solution under measure-valued initial data ν. We also study the
two-point correlation function of the solution and obtain explicit upper and lower
bounds. For C1,α-domains with Dirichlet condition, the initial data ν is not required
to be a finite measure and the moment bounds can be improved under the weaker
condition that the leading eigenfunction of the differential operator is integrable with
respect to |ν|. As an application, we show that the solution is fully intermittent for
sufficiently high level λ of noise under the Dirichlet condition, and for all λ > 0 under
the Neumann condition.
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1 Introduction andmain results

In this paper, we study nonlinear parabolic stochastic partial differential equations
(SPDEs) on a bounded Lipschitz domainU inR

d . By a domainwe refer to a connected
open subset of R

d . Consider a second-order differential operator

L = −
d∑

i, j=1

∂

∂xi

(
ai j (x)

∂

∂x j

)
, (1.1)

where [ai j (x)]i, j is a real-valued symmetric matrix that is Hölder continuous on U
with some exponent 0 < γ ≤ 1 and uniformly elliptic, i.e., there exists a positive
finite constant C such that

C−1|ξ |2 ≤
d∑

i=1

d∑

j=1

ai j (x)ξiξ j ≤ C |ξ |2 for all x ∈ U and ξ ∈ R
d , (1.2)

where |ξ | :=
√

ξ21 + · · · + ξ2d . We consider operators of the form (1.1) because our
approach in this paper is based on heat kernel estimates for operators in divergence
form (see Sect. 3.3 below).We consider the following SPDEwith (vanishing) Dirichlet
boundary condition:

⎧
⎪⎨

⎪⎩

∂
∂t u(t, x) + L u(t, x) = λ σ (t, x, u(t, x)) Ẇ (t, x), t > 0, x ∈ U ,

u(0, ·) = ν(·), x ∈ U ,

u(t, x) = 0, t > 0, x ∈ ∂U ,

(1.3)

as well as the same equation with (vanishing) Neumann boundary condition:

⎧
⎪⎨

⎪⎩

∂
∂t u(t, x) + L u(t, x) = λ σ (t, x, u(t, x)) Ẇ (t, x), t > 0, x ∈ U ,

u(0, ·) = ν(·), x ∈ U ,
∂
∂nu(t, x) = 0, t > 0, x ∈ ∂U ,

(1.4)

where n is the outward normal to the boundary ∂U of U .
We make the following assumption on the noise and correlation function:

Assumption 1.1 The noise Ẇ is a centered and spatially homogeneous Gaussian noise
that is white in time with the covariance given by

E
[
Ẇ (t, x)Ẇ (s, y)

] = δ(t − s) f (x − y), (1.5)

where δ is the delta function and f is a nonnegative and nonnegative definite function
on R

d . We assume that there exist constants 0 < C f < ∞ and 0 < β < 2 ∧ d such
that

C−1
f |x − y|−β ≤ f (x − y) ≤ C f |x − y|−β for all x, y ∈ U . (1.6)
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For example, f may be taken as the Riesz kernel f (x − y) = |x − y|−β . In both
Eqs. (1.3) and (1.4), λ > 0 is a constant parameter representing the level or intensity
of the noise.

We need some regularity and cone conditions on the diffusion coefficient σ , which
is given by the following assumption:

Assumption 1.2 We assume that σ : (0,∞)×U×R → R in both Eqs. (1.3) and (1.4)
is a non-random function such that σ(t, x, 0) = 0 for all (t, x) ∈ (t,∞) × U and
there exists a constant Lσ > 0 such that

|σ(t, x, u) − σ(t, x, v)| ≤ Lσ |u − v| for all t > 0, x ∈ U and u, v ∈ R. (1.7)

In particular, Assumption 1.2 implies that

|σ(t, x, u)| ≤ Lσ |u| for all t > 0, x ∈ U and u, v ∈ R. (1.8)

Besides, we will need the other side of condition (1.8) in order to derive some lower
bounds later: there exists a constant lσ > 0 such that

σ(t, x, u) ≥ lσ |u| for all t > 0, x ∈ U and u ∈ R. (1.9)

Our results will also cover the important case—the parabolic Anderson model (PAM)
[5]:

σ(t, x, u) = u for all t > 0, x ∈ U and u ∈ R. (1.10)

In this case, our results hold with Lσ = lσ = 1.
We assume that the initial condition ν is a non-random, locally finite, signed Borel

measure onU . Denote |ν| := ν+ +ν−, whereμ = μ+ −μ− is the corresponding Jor-
dan decomposition of μ with μ± being two nonnegative Borel measures with disjoint
support. The exact blow-up rate of the locally finite measure near the boundary will
be controlled via an integrability condition by the leading eigenfunction; see (1.14).
Initial conditions of this type will be called rough initial conditions. An important
example is the Dirac delta measure, which plays an important role in the studying the
long-time asymptotics of the solution; see, e.g., [1] and [16].

For stochastic heat equations on R
d , the probabilistic moment bounds and the

two-point correlation function, both under rough initial conditions, have been studied
in [7–10, 14]. As for bounded domains, Foondun and Nualart [24] considered the
stochastic heat equation on an interval (0, L) with space-time white noise and either
Dirichlet or Neumann boundary condition, and studied themoments and intermittency
properties of the solutions. Nualart [33] and Guerngar and Nane [26] extended the
results in [24] to fractional stochastic heat equations with colored noise, but only to
the case when the domain is the unit ball in R

d plus a Dirichlet boundary condition. In
all theseworks [24, 26, 33], the initial conditions are assumed to be a bounded function.
Important initial data, such as the Dirac delta measure, have not been properly studied.

One of the main objectives/contributions of this paper is to study the moments and
correlation function of the solution of parabolic SPDEs (1.3) and (1.4) under rough
initial conditions with a uniformly elliptic operatorL on a bounded domainU ⊂ R

d .
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Fig. 1 Various bounded domains on R
2: Fig. 1.1–1.4 are Lipschitz domains (either convex or not); Fig. 1.5

is a typical example of the non-Lipschitz domain where there is a cusp

For the parabolic Anderson model (i.e., σ(t, x, u) = u) on R
d , Chen and Kim [14]

have shown that the two-point correlation function can be expressed as

E[u(t, x)u(t, x)] = λ−2
∫∫

Rd×Rd
ν(dy) ν

(
dy′) K (

t, x − y, x ′ − y′, y′ − y
)

(1.11)
for some kernel functionK; see also [9] for the space-timewhite noise casewith d = 1.
Under the conditions (1.8) and (1.9) for σ , the correlation function also admits upper
and lower bounds of the same form as the right-hand side of (1.11). By establishing
sharp upper and lower bounds for the kernelK, one can then obtain sharp bounds for the
correlation function. The formula (1.11) is established in [14] by using a convolution-
type operator 
. It is natural to ask if one can obtain similar formula and bounds for the
correlation function in the case of bounded domains. The convolution-type operator

 on a bounded domain U ⊂ R

d has been considered by Candil in [4], where this
operator is used to study the localization error between the solution of the stochastic
heat equation on U and the solution of the same equation on R

d .
In [33], it is mentioned that the extension of the moment estimates from the unit

ball—a smooth, convex and bounded domain—to other bounded domains is not
straightforward. One may expect that some geometric and regularity conditions on
the domain would be required. The majority of our results below work for a general
Lipschitz domain (see examples in Fig. 1(1.1–1.4). Convexity of the domain will be
only required for the lower bounds of the moments in case of the Neumann boundary
conditions. Domains with more regularity than the Lipschitz condition on the domain,
such as the C1,α-domain (α > 0), will allow us to obtain sharper upper moment
bounds under Dirichlet boundary condition. See Table 2 below for a summary of our
results.

For the Neumann boundary condition, there have not been many results except
those in [22, 24, 29], which are concerned with the stochastic heat equation driven
by the space-time white noise on an interval (0, L) in one spatial dimension. In the
Neumann case, they prove that full intermittency occurs for all levels λ > 0 of noise.
This suggests the formation of tall peaks for the solutions even when the noise level
is small. However, the precise intermittency behavior has not been well studied for
general domains under the Neumann boundary condition.

Another main contribution of the paper is about the weak conditions, namely, the
rough initial conditions, that we impose on the initial data ν. When U = R

d , i.e.,
the boundary is at |x | → ∞, and in case of L = − 1

2�, the rough initial condition
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refers to locally finite (signed) measure on R
d that satisfies the following integrability

condition:

∫

Rd
e−a|x |2 |ν|(dx) < ∞, for all a > 0, (1.12)

which is equivalent to the solution to the homogeneous heat equation exists for all
time:

(pt ∗ |ν|)(x) :=
∫

Rd
(2π t)−d/2e− |x−y|2

2t |ν|(dy) < ∞, for all t > 0 and x ∈ R
d .

(1.13)

Initial conditions of this type were studied in [8, 12, 13]; see also [15]. When the
domain U is bounded, we will show that the integrability condition (1.12) should be
replaced by

∫

U

1(y) |ν|(dy) < ∞, (1.14)

where 
1(·) is the eigenfunction corresponding to the leading eigenvalue of the oper-
ator L. In particular, for the Neumann boundary condition case (see Theorems 1.4
and 1.5), since 
1(x) is a constant function that does not vanish at the boundary, con-
dition (1.14) is equivalent to |μ|(U ) < ∞, i.e., |μ| is a finite measure on the domain
U . In case of the Dirichlet boundary condition (see Theorem 1.7 and Corollary 1.9),
condition (1.14) allows locally finite measure with certain growth rate near the bound-
ary. For specific domains, condition (1.14) can be made more explicit; see examples
in Table 1.

In order to obtain precise moment results and allow rough initial conditions, we
start by considering in Lemmas 4.3 and 4.4 the following heat kernel integral:

∫∫

U2
G(t, x, y)G

(
t, x ′, y′) f

(
y − y′) dy dy′.

By using the heat kernel estimates in Proposition 3.6, we find that the sharp bound for
this integral is e−2μ1t (1∧ t)−β/2. In particular, the factor of (1∧ t)−β/2 improves the
estimates in [33]. Furthermore, we consider the convolution-type integral of the heat
kernel

∫∫

U2
G(t − s, x, z)G(t − s, x ′, z′) f (z − z′)G(s, z, y)G(s, z′, y′) dz dz′

andobtain optimal boundswith a similar factor of
(
1∧ (t−s)s

t

)−β/2.Also, basedon these
optimal bounds and the convolution-type operator 
 as considered in [4], we extend
the two-point correlation formula (1.11) and related bounds in Proposition 6.2, and
establish explicit upper and lower bounds for the kernel function in Propositions 6.5
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and 6.7. In Theorem1.5,we use these kernel bounds to obtain sharp bounds for the two-
point correlation function. In case ofC1,α-domains with Dirichlet boundary condition,
we improve the above bounds, in Lemma 7.1 and Proposition 7.2, by including a factor
which contains 
1(x)
1(x ′)
1(y)
1(y′).

As some applications of our moment bounds, in Theorems 2.5 and 2.8, we establish
the full intermittency property for sufficiently large λ under the Dirichlet boundary
condition, and for all λ > 0 under the Neumann boundary condition. This extends
significantly the results in [24]. We also apply our moment bounds to study the L2-
energy of the solution as a function of the parameter λ. This property has been studied
in [22] and [29] on (0, L) in the large λ regime, i.e., as λ → ∞, under the Neumann
boundary condition. In this paper, we study this property in both large and small λ

regimes and for a general bounded domain with Neumann boundary condition. We
find that, at a fixed time, when λ > 0 is small, the L2-energy of the solution onU has
the exponential rate exp(Cλ2), which is different from the rate exp(Cλ4/(2−β)) when
λ is large (see Theorem 2.8 and Corollary 2.10).

Remark 1.3 Since the domain U is bounded, it is natural to study the SPDE in (1.3)
or (1.4) under the framework of infinite-dimensional stochastic differential equations
as in Da Prato and Zabczyk [17]; see also Cerrai [6] and Prévôt and Röckner [37].
However, in order to obtain sharper pointwise estimates of the probabilistic moments
with both t > 0 and x ∈ U fixed, and in order to demonstrate how the geometric
and analytic properties of the boundary ∂U affect the solution especially through the
initial conditions, we adopt the random field approach in this paper. The random field
approach was pioneered by Walsh [43] and extended by Dalang [18]; see [19] for a
comparison of the two approaches.

Before we state our main results, let us first introduce some notations. Throughout
the paper, GD and GN denote the Dirichlet and Neumann heat kernel, respectively.
We use G to denote either GD or GN when we do not need to distinguish the two
cases. We use ‖ · ‖p to denote the L p(�)-norm. Moreover, a ∧ b = min{a, b} for any
a, b ∈ R.

1.1 Main results

Our first theorem concerns the existence and uniqueness of random field solution (see
Definition 3.2 below) and the p-th moment bounds of the solution. For any c > 0, set

Jc(t, x) :=
∫

U

1

1 ∧ td/2 e
−c |x−y|2

t |ν|(dy). (1.15)

It is clear that Jc(t, x) < ∞ for all t > 0 and x ∈ U if and only if |ν|(U ) < ∞, i.e.,
|ν| is a finite Borel measure on U . Let μ1 be the smallest positive eigenvalue of the
operator L with Dirichlet boundary condition on U , and 
1 be the corresponding
eigenfunction such that

{
L
1(x) = μ1
1(x), x ∈ U ,


1(x) = 0, x ∈ ∂U ,
(1.16)
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with 
1 chosen to be positive and usually normalized ‖
1‖L2(U ) = 1; see Sect. 3.3.
We use the following convention for the constantsμ, c, and c′ in Theorems 1.4, 1.5,

and 1.7. In case of Dirichlet (resp. Neumann) boundary condition, we set μ = μ1,
c = c1, c′ = c2 (resp. μ = 0, c = c3, c′ = c4) as the constants given by (3.6)
(resp. (3.7) and (3.8)) in Proposition 3.6 below.

Theorem 1.4 IfU is a bounded Lipschitz domain, the noise Ẇ satisfies Assumption 1.1
and σ satisfies Assumption 1.2, then there exists a random field solution to (1.3) with
Dirichlet boundary condition (and (1.4) with Neumann boundary condition, respec-
tively). Moreover:

(i) If ν has a bounded density, then for all T > 0 and all p ≥ 2,

sup
0<t≤T

sup
x∈U

‖u(t, x)‖p < ∞. (1.17)

(ii) If ν is a signed Borel measure with |ν|(U ) < ∞, then there exists a positive finite
constant C such that for all t > 0, x ∈ U and all p ≥ 2,

‖u(t, x)‖p ≤ Ce
t

(
Cpλ2L2

σ +Cp
2

2−β λ
4

2−β L
4

2−β
σ −μ

)

Jc(t, x). (1.18)

In both cases, the solution is unique among all random field solutions such that for
each T > 0, there exists CT < ∞ such that

‖u(t, x)‖2 ≤ CT Jc(t, x) for all (t, x) ∈ (0, T ] ×U . (1.19)

Parts (i) and (ii) of Theorem 1.4 are proved in Sects. 4 and 5, respectively.
The next result is about the upper and lower bounds for the two-point correlation

of the solution. We need a few more notations: for x ∈ U , denote

dist(x, ∂U ) := inf {|x − y| : y ∈ ∂U } , Uε := {x ∈ U : dist(x, ∂U ) > ε} , (1.20)

and accordingly,

Jc,ε(t, x) :=
∫

Uε

1

1 ∧ td/2 e
−c |x−y|2

t |ν|(dy). (1.21)

Theorem 1.5 (Two-point correlation) Suppose that U is a bounded Lipschitz domain
and the initial data ν is a finite nonnegative measure on U. Assume that the noise Ẇ
satisfies Assumption 1.1 and σ satisfies Assumption 1.2. Let u be the solution to (1.3)
with Dirichlet boundary condition or (1.4) with Neumann boundary condition.

(i) Assume (1.10) or the nonnegativity of the solution, namely, u(t, x) ≥ 0 a.s. for all
(t, x) ∈ (0,∞) × U. Then there exists a positive finite constant C such that for
all t > 0 and x, x ′ ∈ U,

E
(
u(t, x)u(t, x ′)

) ≤ Ce
2t

(
Cλ2L2

σ +Cλ
4

2−β L
4

2−β
σ −μ

)

Jc(t, x)Jc(t, x
′). (1.22)
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(ii) Assume (1.9) or (1.10). Then, in case of Dirichlet boundary condition, there exists
0 < ε0 < 1 such that for all 0 < ε ≤ ε0, there exists C = C(ε) > 0 with
limε→0 C(ε) = 0 such that for all t > 0 and x, x ′ ∈ Uε,

E(u(t, x)u(t, x ′)) ≥ Ce
2t

(
Cλ2l2σ +Cλ

4
2−β l

4
2−β
σ −μ

)

e−16c |x−x ′ |2
t J12c′,ε(t, x)J12c′,ε(t, x

′). (1.23)

In case of Neumann boundary condition, if the heat kernel lower bound (3.8) below
holds (which is the case, for example, when U is a smooth, convex domain and
L = −�; see Proposition 3.6 below), then there exists a constant C > 0 such
that (1.23) holds with ε = 0 for all t > 0 and x, x ′ ∈ U.

Theorem 1.5 is proved at the end of Sect. 6.

Remark 1.6 (Nonnegativity and comparison principle) The condition u ≥ 0 a.s. in
Theorem 1.5 should be interpreted as u(t, x) ≥ 0 a.s. for all t > 0 and x ∈ U . It is
generally believed that under condition (1.8), if the initial condition is nonnegative,
then the solution to the stochastic heat equation (SHE) is nonnegative or even strictly
positive, which is indeed a consequence of the well-known sample-path comparison
principle for SHE. In particular, Mueller [31] established the sample-path comparison
principle for the case of SHE on [0, 1]with Neumann boundary conditions and space-
time white noise. Later, Shiga [41] proved the case of SHE onRwith space-time white
noise. The case of SHE on [0, 1] with Dirichlet boundary conditions was proved by
Mueller and Nualart [32]. The case of SHE on R with a fractional Laplace, space-time
white noise, and rough initial conditions was established in [13] and the case of SHE
onR

d with rough initial data and with a noise that is white in time and homogeneously
colored in space was proved in [12]. The sample-path comparison principle under the
settings of the current paper is left as a future project.

The last set of results focus on the case ofC1,α-domainswith theDirichlet boundary
condition and some variations. Note that C1,α-domains are a special case of Lipschitz
domains. We need to introduce some notations:

�(t, x) := 1 ∧ 
1(x)

1 ∧ t1/2
and J ∗

c (t, x) :=
∫

U
�(t, y)

e−c |x−y|2
t

1 ∧ td/2 |ν|(dy), (1.24)

where
1 is the leading eigenfunction. In this case, we are able to improve the previous
results by giving a new condition (1.25) below, namely 
1 ∈ L1(U , |ν|), which is
weaker than the above condition |ν|(U ) < ∞ in Theorem 1.4 for existence and all
moments of solutions with measure-valued initial data. This new integrability condi-
tion indicates the rate of blow-up for the initial data which is allowed near the boundary
∂U (see Examples 2.1–2.4 and Remark 1.8 below), and hence ν is not necessarily a
finite measure. Moreover, because

�(t, x)
∣∣∣
x∈∂U

= 0 and J ∗
c (t, x) ≤ Jc(t, x),
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the bounds in (1.26), (1.28) and (1.29) below strengthen the previous bounds (1.18),
(1.22) and (1.23), respectively, especially near the boundary of the domain. Indeed,

(1) for any t > 0 fixed, when x is close to the boundary ofU , the term�(t, x) in (1.18)
and (1.22) plays the dominant role in pushing the moments to zero;

(2) for any x ∈ U fixed, since �(·, ·) ≤ 1, when t → 0, the term J ∗
c (t, x) 


(pt ∗ |ν|)(x) defines the behavior of the moments. Here, pt (x) is the heat kernel
on R

d and “∗” refers to the spatial convolution; see (1.13).
Theorem 1.7 Let U be a bounded C1,α-domain for some α > 0 with the Dirichlet
boundary condition at ∂U. Assume that the noise Ẇ satisfies Assumption 1.1 and
σ satisfies Assumption 1.2. If the initial condition ν is any locally finite and signed
measure that satisfies the following integrability condition

‖
1‖L1(U , |ν|) =
∫

U

1(y) |ν|(dy) < ∞, (1.25)

where 
1(·) is the leading eigenfunction of the differential operatorL on the domain
U, then we have the following:

(i) There exists a random field solution to (1.3). The solution has the property that for
some C < ∞, for all t > 0 and x ∈ U,

‖u(t, x)‖p ≤ Ce
t

(
Cpλ2L2

σ +Cp
2

2−β λ
4

2−β L
4

2−β
σ −μ1

)

�(t, x)J ∗
2c1/3(t, x), (1.26)

whereμ1 and c1 are the constants in Proposition 3.6 below. Moreover, the solution
is unique among all random field solutions such that for each T > 0, there exists
CT < ∞ such that

‖u(t, x)‖2 ≤ CT�(t, x)J ∗
c (t, x) for all (t, x) ∈ (0, T ] ×U . (1.27)

(ii) Assume (1.10) or the nonnegativity of the solution, namely, u(t, x) ≥ 0 a.s. for all
(t, x) ∈ (0,∞) ×U. Then for all t > 0 and x, x ′ ∈ U,

E(u(t, x)u(t, x ′))

≤ Ce
2t

(
Cλ2L2

σ +Cλ
4

2−β L
4

2−β
σ −μ1

)

�(t, x)�(t, x ′)J ∗
2c1/3(t, x)J

∗
2c1/3(t, x

′).
(1.28)

(iii) Assume (1.9) or (1.10). Then, there exists C̄ > 0 such that for all t > 0 and
x, x ′ ∈ U,

E(u(t, x)u(t, x ′)) ≥ C̄e
2t

(
C̄λ2l2σ +C̄λ

4
2−β l

4
2−β
σ −μ1

)

e−16c2
|x−x ′|2

t �(t, x)�(t, x ′)J ∗
12c2(t, x)J

∗
12c2(t, x

′). (1.29)
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Remark 1.8 Condition (1.25) holds if and only if

J ∗
c (t, x) < ∞ for all c > 0, t > 0 and x ∈ U .

which is the consequence of the following bounds:

((c0D)−1 ∧ 1)e− cD2
t ‖
1‖L1(U , |ν|)

≤ J ∗
c (t, x) ≤ ‖
1‖L1(U , |ν|)

1 ∧ t (d+1)/2
for all t > 0 and x ∈ U , (1.30)

where D := sup{|x − y|, x, y ∈ U } and we have used the fact that 
1(·) is bounded
(see Remark 3.7). The proof of (1.30) is straightforward and is left as an exercise for
interested readers.

In fact, Theorem 1.7 can easily be extended for Cartesian products of bounded
C1,α-domains to allow some Lipschitz domains; see Example 2.1 below.

Corollary 1.9 Let U be a bounded domain in the following Cartesian product form:

U = U1 ×U2 × · · · ×Um ⊆ R
d , with m ≥ 1, Ui ⊆ R

di , di ≥ 1, and
m∑

i=1

di = d.

Assume that eachUi is a boundedC1,αi -domain for someαi > 0. LetLi be a uniformly
elliptic differential operator on Ui of the form (1.1) satisfying the condition (1.2).
Consider the SPDE (1.3) withL = L1+· · ·+Lm onU with the Dirichlet boundary
condition. Suppose σ satisfies Assumption 1.2 and the initial measure ν on U satisfies
the following integrability condition

∫

U

m∏

i=1



Ui
1 (xi )|ν|(dx) < ∞, (1.31)

where

Ui
1 (xi ) is the eigenfunction corresponding to the leading eigenvalueμ

Ui
i of the

Dirichlet operatorLi on Ui . Let J ∗
c (t, x) be defined as in (1.24) but with � replaced

by

�∗(t, x) :=
m∏

i=1

(
1 ∧ 


Ui
1 (xi )

1 ∧ t1/2

)
. (1.32)

Then, the statements (i) and (ii) in Theorem 1.7 above hold with μ1 = ∑m
i=1 μ

Ui
i ,

which is the leading eigenvalue of the Dirichlet operator L , and with � defined
in (1.24) replaced by �∗ defined above in (1.32).

Theorem 1.7 and Corollary 1.9 are proved at the end of Sect. 7. Finally, Table 2
below summarizes the main results of this paper.
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1.2 Outline of the paper

The rest of the paper is organized as follows. In Sect. 2, we first give some concrete
examples and apply our moment bounds to establish the full intermittency of the
solution and discuss its L2-energy. Then in Sect. 3, we give some preliminaries which
include the definition of themild solution in Sect. 3.1, the cone condition for the domain
in Sect. 3.2, and the heat kernel estimates for the Eqs. (1.3) and (1.4) in Sect. 3.3. Then
in Sects. 4, resp. 5, we derive the moment bounds in case of bounded, resp. rough,
initial conditions, and prove the two cases in Theorem 1.4. The two-point correlation
function is studied in Sect. 6, where Theorem 1.5 is proved. The case of bounded
C1,α-domains with Dirichlet condition is studied in Sect. 7, at the end of which we
prove Theorem 1.7 and Corollary 1.9.

2 Examples and applications

In this Section, we give some examples of our main results and apply our moment
bounds to study the intermittency property and the L2-energy of the solutions.

2.1 Rough initial conditions under Dirichlet boundary condition

In this part, we give a few examples to illustrate Theorem 1.7 and Corollary 1.9.

Example 2.1 (Interval for d = 1) Consider the stochastic heat Eq. (1.3) with L =
−∂2/∂x2 on an interval U = (0, L) with Dirichlet boundary condition. This is a
smooth, and hence C1,α domain. The first eigenvalue is μ1 = (π/L)2 and the corre-
sponding eigenfunction is
1(x) = (2/L)1/2 sin(πx/L). In this case,�(t, x) defined
in (1.24) reduces to (see Fig. 2(2.1))

� (t, x) = 1 ∧ (2/L)1/2 sin (πx/L)

1 ∧ √
t

, (2.1)

and condition (1.25) becomes

∫ L

0
sin(πx/L) |ν|(dx) < ∞ ⇐⇒

∫ L

0
x(L − x) |ν|(dx) < ∞. (2.2)

Due to the dissipative or cooling-down effect of the Dirichlet boundary condition,
one can inject, at time zero, more heat flow into the domain from the boundary. For
example, the following nonnegative measures with compact support satisfies (2.2) or
equivalently (1.25):

ν(dx) = 1(0,L)(x)

[sin(πx/L)]β
dx or ν(dx) = 1(0,L)(x)

[x(L − x)]β
dx, with β < 2. (2.3)
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Fig. 2 Some plots of the function �(t, x) in case of d = 1 in Fig. 2.1 with L = 2, x ∈ [0, 2] and t ∈ [0, 3]
and �(t, r) in case of d ≥ 2 in Fig. 2.2 with d = 4, r ∈ [0, 1] and t ∈ [0, 3]. The normalization constant
Cd for the plot in Fig. 2.2 is chosen to be the one in (7.8) so that max(t,r)∈(0,∞)×(0,1) �(t, r) = 1

But since examples in (2.3) neither have bounded densities nor are finite measures on
the domain being considered, both parts of Theorem 1.4 fail to apply for such initial
conditions.

Example 2.2 (Unit ball in R
d ) Consider the stochastic heat Eq. (1.3) with L = −�

on the unit disk U = B(0, 1) in R
d , d ≥ 2, with Dirichlet boundary con-

dition. The first eigenvalue is μ1 = z20, where z0 is the first positive zero of
the Bessel function J(d−2)/2(·), and the corresponding eigenfunction is 
1(x) =
1
Cd

|x |(2−d)/2 J(d−2)/2(z0|x |); see Remark 7.4 below for more details. In this case,
�(t, x) defined in (1.24) reduces to (see Fig. 2(2.2) with r = |x |)

�(t, x) = 1 ∧ |x |(2−d)/2 J(d−2)/2(z0|x |)
Cd

(
1 ∧ √

t
) . (2.4)

Similarly to the previous example, we claim that the following locally finite nonneg-
ative measure on R

d with compact support

ν(dx) = 1B(0,1)(x)

|x |β0 (1 − |x |)β1 dx, with β0 < 2 and β1 < 2, (2.5)

satisfies condition (1.25). Indeed,

0 ≤
∫

B(0,1)

|x |(2−d)/2 J(d−2)/2(z0|x |)
|x |β0 (1 − |x |)β1 dx = Cd

∫ 1

0

r (2−d)/2 J(d−2)/2(z0r)

rβ0−1 (1 − r)β1
dr

≤ Cd × C × I ,
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where

C := max
r∈(0,1)

r (2−d)/2 J(d−2)/2(z0r)

1 − r
< ∞ and I :=

∫ 1

0

dr

rβ0−1(1 − r)β1−1 < ∞.

Note that the abovemaximum is finite thanks to Lemma 7.3 below. By the same reason,
condition (1.25) in this case reduces to

∫

B(0,1)
(1 − |x |) |ν|(dx) < ∞. (2.6)

Example 2.3 (Annular domain inR
2) Consider the stochastic heat Eq. (1.3) withL =

−� on the following annulus with Dirichlet boundary condition.1:

U =
{
x ∈ R

2 : R1 < |x | < R2

}
, 0 < R1 < R2 < +∞.

Note that U is a nonconvex, but smooth, bounded domain. The leading eigenvalue is
μ1 = z20, where z0 is the first positive zero of the cross-product Bessel functions

J0(R1z)Y0(R2z) − Y0(R1z)J0(R2z) = 0, (2.7)

where J0(·) and Y0(·) are the Bessel functions of the first and second kind of order
zero, respectively. The corresponding eigenfunction is


1(x) = CZ(|x |) with Z(r) := J0(R1z0)Y0(r z0) − Y0(R1z0)J0(r z0); (2.8)

see Fig. 3(3.1) for a plot of 
1(x). Similarly to the previous example (2.2), we claim
that

ν(dx) = |x |β01U (x)

(R2 − |x |)β2 (|x | − R1)
β1
dx, with βi < 2, i = 1, 2, and β0 ∈ R,

(2.9)

satisfies condition (1.25). Indeed,

0 <

∫

U


1(x)|x |β0dx
(R2 − |x |)β2 (|x | − R1)

β1
= 2π

∫ R2

R1

Z(r)rβ0+1dr

(R2 − r)β2 (r − R1)
β1

≤ 2π × C × I ,

where

C := max
r∈(R1,R2)

Z(r)

(R2 − r) (r − R1)
< ∞ and I :=

∫ R2

R1

rβ0+1dr

(R2 − r)β2−1 (r − R1)
β1−1 < ∞.

1 The explicit form of the fundamental solution can be found, e.g., in [36, Section 4.1.2 on p. 418].
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Fig. 3 Some plots of the leading eigenfunction 
1(x) with x ∈ R
2 both in case of the annular domain in

Fig. 3.1 where R1 = 1 and R2 = 3 and of the rectangular domain in Fig. 3.2 where L = 2

Note that the finiteness of the above constant C is due to the fact that R1 and R2 are
both simple zeros of Z(r); see Lemma 7.5 below. By the same reason, in this case,
condition (1.25) can be equivalently written as

∫

R1<|x |<R2

(R2 − |x |) (|x | − R1) |ν|(dx) < ∞.

Example 2.4 (Rectangular domain in R
d with d ≥ 2) Consider the stochastic heat

Eq. (1.3) with L = −� on the rectangular domain U = (0, L)d ⊆ R
d , d ≥ 2

and L > 0, with Dirichlet boundary condition. Note that for d ≥ 2, U has corners
and hence, is not a C1,α–domain, but only a Lipschitz domain. The first eigenvalue is
μ1 = d × (π/L)2 and the corresponding (normalized) eigenfunction is given by (see
Fig. 3(3.2) for a plot)


1(x) = (2/L)d/2
d∏

i=1

sin
(πxi

L

)
, for x = (x1, . . . , xd) ∈ (0, L)d .

Similar to Example 2.1, by Corollary 1.9, �∗ (t, x) defined in (1.32) reduces to

�∗ (t, x) =
d∏

i=1

(
1 ∧ (2/L)1/2 sin (πxi/L)

1 ∧ √
t

)
, (2.10)

and condition (1.31) becomes

∫

(0,L)d
|ν|(dx)

d∏

i=1

sin
(πxi

L

)
< ∞ ⇐⇒

∫

(0,L)d
|ν|(dx)

d∏

i=1

(xi (L − xi )) < ∞.

(2.11)

Locally finite measures similar to (2.3) can be constructed component-wise.
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Other Lipschitz domains can be considered as an application of Corollary 1.9 as
well. For example, for the cylinder domain

U =
{
(x1, x2, x3) ∈ R

3 : x21 + x22 < 1 and 0 < x3 < 1
}

,

as an easy exercise (which is left for the interested readers), condition (1.31) becomes

∫

R3

(
1 − x21 − x22

)
x3(1 − x3) |ν|(dx) < ∞.

2.2 Intermittency

Following [23] and Definition III.1.1 of [5], we say that u is weakly intermittent if, for
all x ∈ U ,

lim sup
t→∞

1

t
logE(|u(t, x)|2) > 0 and (2.12)

lim sup
t→∞

1

t
logE(|u(t, x)|p) < ∞ for all p ≥ 2, (2.13)

and u is fully intermittent (or simply intermittent) if (2.12) can be strengthened to

lim inf
t→∞

1

t
logE(|u(t, x)|2) > 0. (2.14)

The following two theorems extend the corresponding results in [24] and [33].
Recall that μ1 is the first eigenvalue of the operator L with Dirichlet boundary
condition. Also, recall the definitions of Jc(t, x) and Jc,ε(t, x) in (1.15) and (1.21),
respectively. The following theorem provides moment bounds for the solution and
shows that full intermittency occurs when λ is sufficiently large, but not when λ is
small.

Theorem 2.5 Let U ⊂ R
d be a bounded Lipschitz domain. Let u be the solution

to (1.3) with Dirichlet boundary condition. Suppose (1.8) holds. Suppose ν ≥ 0 and
ν(U ) < ∞. Then, there exist positive finite constants C, c and c′ such that for all
p ≥ 2, λ > 0, t > 0, x ∈ U,

E(|u(t, x)|p) ≤ C p(Jc1(t, x)
)p
e
pt

(
cpλ2L2

σ +c′ p
2

2−β λ
4

2−β L
4

2−β
σ −μ1

)

. (2.15)

Moreover, if (1.10) or (1.9) holds, then there exists 0 < ε0 < 1 such that for all
0 < ε ≤ ε0, there exist positive finite constants C, c and c̃ depending on ε such that
for all p ≥ 2, λ > 0, t > 0, x ∈ Uε,

E(|u(t, x)|p) ≥ C
p(
J12c2,ε(t, x)

)p
e
pt

(
cλ2l2σ +c̃λ

4
2−β l

4
2−β
σ −μ1

)

. (2.16)
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Consequently, if 0 < ν(Uε) ≤ ν(U ) < ∞, then there exist 0 < λ0 < λ1 < ∞ such
that u is fully intermittent on Uε when λ > λ1, but not when λ < λ0 as

lim sup
t→∞

1

t
logE(|u(t, x)|2) < 0,

where

λ0 := sup
{
λ > 0 : 2cλ2L2

σ + 2
2

2−β c′λ
4

2−β L
4

2−β
σ ≤ μ1

}
,

λ1 = λ1(ε) := inf
{
λ > 0 : cλ2l2σ + c̃λ

4
2−β l

4
2−β
σ ≥ μ1

}
.

Proof The upper bound (2.15) follows from Theorem 1.4. The lower bound follows
from Theorem 1.5 and Jensen’s inequality E(|u(t, x)|p) ≥ E(|u(t, x)|2)p/2.

It remains to prove the last statement of full intermittency. First, since ν(U ) < ∞,

lim sup
t→∞

1

t
log

(
Jc1(t, x)

)p ≤ lim sup
t→∞

p

t

(
− log(1 ∧ td/2) + log ν(U )

)
= 0.

Then, (2.15) implies that for all x ∈ U and λ > 0,

lim sup
t→∞

1

t
logE(|u(t, x)|p) ≤ p

(
cpλ2L2

σ + c′ p
2

2−β λ
4

2−β L
4

2−β
σ − μ1

)
, (2.17)

which proves (2.13). Moreover, ν(Uε) > 0 implies log ν(Uε) > −∞, hence

lim inf
t→∞

1

t
log

(
J12c2,ε(t, x)

)2

≥ lim inf
t→∞

2

t

(
− log(1 ∧ td/2) − 4c2 sup

x,y∈U
|x − y|2 + log ν(Uε)

)
= 0.

If λ > λ1, then it follows from (2.16) that for all x ∈ Uε,

lim inf
t→∞

1

t
logE(|u(t, x)|2) ≥ 2

(
cλ2l2σ + c̃λ

4
2−β l

4
2−β
σ − μ1

)
> 0,

which proves (2.14). Hence, u is fully intermittent onUε. On the other hand, by (2.17),

lim sup
t→∞

1

t
logE(|u(t, x)|2)

≤ 2
(
2cλ2L2

σ + 2
2

2−β c′λ
4

2−β L
4

2−β
σ − μ1

)
< 0, when λ < λ0,

which completes the proof of Theorem 2.5. ��
Similarly, we get the following result from Theorem 1.7 for C1,α-domains.
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Theorem 2.6 Let U ⊂ R
d be a bounded C1,α-domain, where α > 0. Let u be the

solution to (1.3) with Dirichlet boundary condition. Suppose (1.8) holds. Suppose
ν ≥ 0 and 
1 ∈ L1(U , ν). Then, there exist positive finite constants C, c and c′ such
that for all p ≥ 2, λ > 0, t > 0, x ∈ U,

E(|u(t, x)|p) ≤ C p� p(t, x)
(
J ∗
2c1/3(t, x)

)p
e
pt

(
cpλ2L2

σ +c′ p
2

2−β λ
4

2−β L
4

2−β
σ −μ1

)

.

(2.18)
Moreover, if (1.10) or (1.9) holds, then there exist positive finite constants C, c and c̃
such that for all p ≥ 2, λ > 0, t > 0, x ∈ U,

E(|u(t, x)|p) ≥ C
p
� p(t, x)

(
J ∗
12c2(t, x)

)p
e
pt

(
cλ2l2σ +c̃λ

4
2−β l

4
2−β
σ −μ1

)

. (2.19)

Consequently, if 0 < ‖
1‖L1(U , ν) < ∞, then there exist 0 < λ0 < λ1 < ∞ such that
u is fully intermittent on U when λ > λ1, but not when λ < λ0, where

λ0 := sup
{
λ > 0 : 2cλ2L2

σ + 2
2

2−β c′λ
4

2−β L
4

2−β
σ ≤ μ1

}
,

λ1 := inf
{
λ > 0 : cλ2l2σ + c̃λ

4
2−β l

4
2−β
σ ≥ μ1

}
.

As in [24, 26, 33], it is not clear whether the solution is intermittent if λ ∈ [λ0, λ1]
in Theorems 2.5 and 2.6 above. Instead, we propose the following conjecture for future
investigation.

Conjecture 2.7 Under the settings of either Theorem 2.5 or Theorem 2.6, there exists
λ∗ ∈ [λ0, λ1] such that when λ > λ∗, the solution u(t, x) to (1.3) is fully intermittent;
when λ < λ∗, the solution has all p-th moments (p ≥ 2) bounded in time and is not
fully intermittent.

Theorem 2.8 LetU ⊂ R
d be a convex bounded Lipschitz domain. Let u be the solution

to (1.4) with Neumann boundary condition. Suppose (1.8) holds. Suppose ν ≥ 0 and
ν(U ) < ∞. Then, there exist positive finite constants C, c and c′ such that for all
p ≥ 2, λ > 0, t > 0, x ∈ U,

E(|u(t, x)|p) ≤ C p(Jc3(t, x)
)p
e
pt

(
cpλ2L2

σ +c′ p
2

2−β λ
4

2−β L
4

2−β
σ

)

. (2.20)

Moreover, if (1.10) or (1.9) holds, then there exist positive finite constants C, c and c̃
such that for all p ≥ 2, λ > 0, t > 0, x ∈ U,

E(|u(t, x)|p) ≥ C
p(
J12c4(t, x)

)p
e
pt

(
cλ2l2σ +c̃λ

4
2−β l

4
2−β
σ

)

. (2.21)

Consequently, if 0 < ν(U ) < ∞, then u is fully intermittent on U for all λ > 0.
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Proof The proof of (2.20) and (2.21) is similar to that of Theorem 2.5. Finally, (2.20)
and (2.21) imply that

lim inf
t→∞

1

t
logE(|u(t, x)|2) ≥ 2

(
cλ2l2σ + c̃λ

4
2−β l

4
2−β
σ

)
> 0

and

lim sup
t→∞

1

t
logE(|u(t, x)|p) ≤ p

(
cpλ2L2

σ + c′ p
2

2−β λ
4

2−β L
4

2−β
σ

)
< ∞

for all p ≥ 2 and all λ > 0. Hence, u is fully intermittent for all λ > 0. ��

2.3 L2(U)-energy of solution

Following [24, 29, 30], the L2-energy of the solution u at time t > 0 is defined as

Et (λ) =
(

E

∫

U
|u(t, x)|2dx

)1/2

,

and the excitation index (at infinity) is defined as

lim
λ→∞

log logEt (λ)

log λ

provided the limit exists. Note that, for ε ≥ 0,

Vol(Uε) × inf
x∈Uε

E(|u(t, x)|2) ≤ E 2
t (λ) ≤ Vol(U ) × sup

x∈U
E(|u(t, x)|2).

As a result of Theorems 2.5 and 2.8, we see that the solution is intermittent for λ

large under Dirichlet or Neumann boundary condition, and the energy of the solution
behaves like

Et (λ) ∼ CeCtλ
4

2−β
for λ large.

Under Neumann boundary condition, the solution remains intermittent even when
λ > 0 is small. However, in this case, the energy of the solution has a different
exponential rate in λ than the one above, namely,

Et (λ) ∼ CeCtλ2 for λ > 0 small.

In other words, the excitation index “at zero” is different. We obtain the following
corollaries:

Corollary 2.9 Let u be the solution of (1.3) with Dirichlet boundary condition.
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(1) If the conditions of Theorem 2.5 hold, then for all t > 0,

lim
λ→∞

log logEt (λ)

log λ
= 4

2 − β
.

(2) Moreover, if the conditions of Theorem 2.6 hold, then for all t > 0,

E ∗
t (λ) :=

(
E

∫

U
|u(t, x)|2 dx

|
1(x)|2
)1/2

< ∞

and

lim
λ→∞

log logE ∗
t (λ)

log λ
= 4

2 − β
.

Note that Et (λ) ≤ CE ∗
t (λ) for some constant C .

Corollary 2.10 Let u be the solution of (1.4) with Neumann boundary condition and
the conditions in Theorem 2.8 hold. Then for any t > 0,

lim
λ→∞

log logEt (λ)

log λ
= 4

2 − β
and lim

λ→0+
log logEt (λ)

log λ
= 2.

3 Preliminaries

3.1 Mild solutions

Let Ẇ be a centered and spatially homogeneous Gaussian noise that is white in time
defined on a complete probability space (�,F , P) with covariance given in (1.5).

Remark 3.1 Let f be any spatially homogeneous correlation correlation function on
R
d ; see (1.5). When restricted on the domain {x − y : x, y ∈ U }, f (·) is still a non-

negative definite function. Indeed, for any test function φ defined on U ,

∫∫

U2
φ(x) f (x − y)φ(y)dxdy

=
∫∫

R2d
(φ(x)1U (x)) f (x − y) (φ(y)1U (y)) dxdy ≥ 0.

LetB(U ) denote the Borel σ -algebra onU ⊆ R
d . Let {Wt (A); t ≥ 0, A ∈ B(U )}

be the martingale measure associated to the noise Ẇ in the sense of Walsh [43]. Let
{Ft , t ≥ 0} be the underlying filtration generated by W and augmented by the σ -field
N generated by all P-null sets in F , namely,

Ft = σ {Ws(A) : 0 ≤ s ≤ t, A ∈ B(U )} ∨ N .
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Definition 3.2 Aprocess u = {u(t, x); t > 0, x ∈ U } is called a random field solution
to (1.3) (or (1.4), respectively) if:

(i) u is adapted, i.e., for each t > 0 and x ∈ U , u(t, x) isFt -measurable;
(ii) u is jointly measurable with respect toB((0,∞) ×U ) × F ;
(iii) for each t > 0 and x ∈ U ,

E

(∫ t

0
ds

∫∫

U2
dy dy′ G(t − s, x, y)σ (s, y, u(s, y)) f (y − y′)

G(t − s, x, y′)σ (s, y′, u(s, y′))
)

< ∞; (3.1)

(iv) u satisfies

u(t, x) = J (t, x)+λ

∫ t

0

∫

U
G(t−s, x, y)σ (s, y, u(s, y))W (ds, dy) a.s. (3.2)

for each t > 0 and x ∈ U , whereG = GD (orG = GN , respectively), and J (t, x)
is the solution to the homogeneous equation, namely,

J (t, x) :=
∫

U
G(t, x, y)ν(dy). (3.3)

Note that in (iii) above, the condition (3.1) ensures that theWalsh stochastic integral

∫ t

0

∫

U
G(t − s, x, y)σ (s, y, u(s, y))W (ds, dy)

is well-defined and the square of its ‖ · ‖2-norm is equal to the expression in (3.1).

3.2 Regularities and geometric properties of the domain

The definition of the Lipschitz domain is standard; see e.g. Section 1.2.1 of [25].

Definition 3.3 A bounded domain U ⊂ R
d is called a Lipschitz domain if there exist

positive constants KU and r0 such that for every q ∈ ∂U , there exist a Lipschitz
function Fq : R

d−1 → R satisfying |Fq(x) − Fq(x)| ≤ KU |x − x | for all x, x ∈
R
d−1 and an orthonormal coordinate system with origin q such that if z = (x, y),

x ∈ R
d−1, y ∈ R, in this coordinate system, then

U ∩ B(q, r0) = B(q, r0) ∩ {
z = (x, y) : y > Fq(x)

}

and

∂U ∩ B(q, r0) = B(q, r0) ∩ {
z = (x, y) : y = Fq(x)

}
,

where B(q, r0) is the open ball centered at q of radius r0. We call KU the Lipschitz
constant of U and r0 the localization radius of U .
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U

x

δ
ξx

C (y, ξx, δ)
y

Fig. 4 Illustration for the δ-cone property in Definition 3.4

Definition 3.4 (Definition 2.4.1 of [27]) For δ > 0, we say that U has the δ-cone
property if, for every x ∈ ∂U , there exists a unit vector ξx ∈ R

d such that for all
y ∈ U ∩ B(x, δ), we have C (y, ξx , δ) ⊂ U , where C (y, ξ, δ) is the δ-cone defined
by

C (y, ξ, δ) :=
{
z ∈ R

d : 0 < |z − y| < δ and (z − y) · ξ ≥ |z − y| cos(δ)
}

. (3.4)

See Fig. 4 for an illustration.

It is clear that ifU has the δ-cone property, then it also has the δ′-cone property for
0 < δ′ ≤ δ. It is known that for a bounded domainU ⊂ R

d , it is a Lipschitz domain if
and only if it has the δ-cone property for some δ > 0; see, e.g., [27, Theorem 2.4.7] or
[25, Theorem 1.2.2.2]. In particular, according to the above definitions, one can easily
see that if U is a Lipschitz domain, then it satisfies the δ-cone condition with

δ = arctan(1/KU ) ∧ r0. (3.5)

The δ-cone property gives us a convenient way to handle the Lipschitz domain.

Example 3.5 Any C1,α-domain with α > 0 is a Lipschitz domain; see, e.g., [35].
The unit ball in R

d is a smooth domain and also a C1,α-domain. U = (−1, 1)d is a
Lipschitz domain but not a C1,α-domain for any α > 0. Domains with cusps are not
Lipschitz domain; see Fig. 1(1.5).

3.3 Heat kernel estimates

Recall thatL is the operator defined in divergence form (1.1) satisfying the uniformly
elliptic condition (1.2). It is known that the operator L with Dirichlet boundary
condition on U has a discrete spectrum with a sequence of positive eigenvalues 0 <

μ1 ≤ μ2 ≤ . . . such that the first eigenvalueμ1 is simple and its eigenfunction
1 can
be chosen to be positive and ‖
1‖L2(U ) = 1; see, e.g., [20]. Moreover, we have the
following heat kernel estimates under Dirichlet and Neumann boundary conditions.

Proposition 3.6 Let U ⊂ R
d be a bounded Lipschitz domain. Then the following

estimates hold.
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(i) Dirichlet heat kernel estimates: There exist positive finite constants c1, c2,C1,C2
and 0 < a2 ≤ 1 ≤ a1 such that for all t > 0 and x, y ∈ U,

C2

(
1 ∧ 
1(x)

1 ∧ ta2/2

)(
1 ∧ 
1(y)

1 ∧ ta2/2

)
e−μ1t

1 ∧ td/2 e
−c2

|x−y|2
t

≤ GD(t, x, y)

≤ C1

(
1 ∧ 
1(x)

1 ∧ ta1/2

)(
1 ∧ 
1(y)

1 ∧ ta1/2

)
e−μ1t

1 ∧ td/2 e
−c1

|x−y|2
t .

(3.6)

Moreover, if U is a bounded C1,α-domain with α > 0, then (3.6) holds with
a1 = a2 = 1.

(ii) Neumann heat kernel estimates: there exist positive finite constants c3 and C3 such
that for all t > 0 and x, y ∈ U,

GN (t, x, y) ≤ C3
1

1 ∧ td/2 e
−c3

|x−y|2
t . (3.7)

In addition, if U is a smooth convex domain andL = −�, then there exist positive
finite constants c4 and C4 such that for all t > 0 and x, y ∈ U,

GN (t, x, y) ≥ C4
1

1 ∧ td/2 e
−c4

|x−y|2
t . (3.8)

Proof The Dirichlet case is proved in [38] (see Theorem 2.1 and Remark 1 on p.123).
For the Neumann case, the upper bound in (3.7) can be found in Theorem 3.2.9 of [20],
where we note that the extension property referred in that theorem (ibid.) is satisfied
by the Lipschitz domain (see either Proposition 1.7.9 of [20] or Theorem 1.4.3.1 of
[25]). The lower bound in (3.8) follows from [40, Theorem 3.1 and Examples 3.3];
see also [39]. ��
Remark 3.7 In the Dirichlet boundary condition case, by [38, (1.2)], there exists a
finite constant c0 > 1 such that for all z ∈ U ,

c−1
0 [dist(z, ∂U )]a1 ≤ 
1(z) ≤ c0 [dist(z, ∂U )]a2 , (3.9)

where a1 and a2 are constants from part (i) of Proposition 3.6.

Remark 3.8 In general, Theorem 3.1 of [40] states that the following conditions are
equivalent:

• The two-sided bound (3.7) and (3.8) holds for the Neumann heat kernel onU , that
is, for all t > 0 and x, y ∈ U ,

C4
1

1 ∧ td/2 e
−c4

|x−y|2
t ≤ GN (t, x, y) ≤ C3

1

1 ∧ td/2 e
−c3

|x−y|2
t ; (3.10)

• The parabolic Harnack inequality holds;
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• The domainU has the volume doubling property and the Poincaré inequality holds.

The results of the present paper under the Neumann boundary condition, especially
the lower bound results, remain valid forU satisfying any one of the above equivalent
conditions.

In the rest of the paper, the lower case constants c1, c2, c3, c4 are reserved for the
constants given by Proposition 3.6 above.

Before the end of this subsection, we prove that the Lipschitz domainU satisfies the
lower bound in (3.11) below. The following lemmamaywell be buried in the literature.
Since its proof is short, it will be given below. Let Vol(A) denote the volume (or d-
dimensional Lebesgue measure) of any measurable set A in R

d .

Lemma 3.9 Suppose that U is a bounded Lipschitz domain in R
d . Then, there exists

positive finite constants C and C ′ such that for all y ∈ U and r > 0,

C(1 ∧ r)d ≤ Vol(U ∩ B(y, r)) ≤ C ′(1 ∧ r)d . (3.11)

Proof The upper bound is trivial since Vol(U∩B(y, r)) ≤ Vol(U )∧Vol(B(y, r)).We
only need to prove the lower bound. It is known that the Lipschitz domain U satisfies
the δ-cone property with δ given in (3.5).

We first consider the case of 0 < r < δ. If dist(y, ∂U ) > r , then B(y, r) ⊂ U and

Vol(U ∩ B(y, r)) = Vol(B(y, r)) = Vd r
d ≥ Vd(1 ∧ r)d ,

where Vd = πd/2/�(d/2 + 1). If dist(y, ∂U ) ≤ r , then y ∈ B(x, δ) for some
x ∈ ∂U , and by the δ-cone property, we can find a unit vector ξ = ξx ∈ R

d such that
C (y, ξ, δ) ⊂ U . It follows that

Vol(U ∩ B(y, r)) ≥ Vol(C (y, ξ, δ) ∩ B(y, r))

= Vol{z ∈ R
d : 0 < |z − y| < r and (z − y) · ξ ≥ |z − y| cos δ}

= Cd,δVd r
d ,

whereCδ,d ∈ (0, 1]. Therefore, when r ∈ (0, δ), Vol(U∩B(y, r)) ≥ Cd,δVd (1 ∧ r)d .
Finally, the case of r ≥ δ follows from the previous case because

Vol(U ∩ B(y, r)) ≥ Vol(U ∩ B(y, δ)) ≥ Cd,δVd δd ≥ Cd,δVd δd(1 ∧ r)d .

This implies the desired lower bound with C = Cd,δVd (1 ∧ δ)d . ��
Next, we need to replace U in (3.11) above by a subset of U with some specific

properties. Take 0 < ε1 < 1 such that Uε1 �= ∅ (see (1.20)) and let

ε0 = ε1 ∧ (δ/2). (3.12)

By the compactness of U , find and fix a finite collection of open balls {B(yi , ε0)}mi=1
with centers y1, . . . , ym ∈ ∂U such that

⋃m
i=1 B(yi , ε0) ⊃ U\Uε0/2. Then, for any

x ∈ U , we have one of the following cases:
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yiε0

ξyi ε0/2

U

Uε

Uε0/2

V (x)
x

V (x)x

Fig. 5 Illustration for the two cases of V (x) in (3.13)

(1) If x ∈ ⋃m
i=1 B(yi , ε0), choose the smallest i such that B(yi , ε0) � x . Then, by the

δ-cone property of U , we have C (x, ξyi , ε0/2) ⊂ U .
(2) If x /∈ ⋃m

i=1 B(yi , ε0), then dist(x, ∂U ) > ε0/2 and thus B(x, ε0/2) ⊂ U .

Accordingly, we define (see Fig. 5 for an illustration)

V (x) =
{
C (x, ξyi , ε0/2) in case (1),

B(x, ε0/2) in case (2).
(3.13)

The next lemma will be used later together with the heat kernel estimates to derive
the lower bounds in Lemmas 5.1 and 5.2 below.

Lemma 3.10 Let U ⊂ R
d be a bounded Lipschitz domain with the δ-cone property.

Let ε0 ∈ (0, 1) and V (x) ⊂ U, for x ∈ U, be defined by (3.12) and (3.13) above.
Then, for each ε ∈ (0, ε0] there exists cε > 0 with limε→0 cε = 0 such that for all
x ∈ Uε, we have

d(z) := dist(z, ∂U ) ≥ cε for all z ∈ V (x) (3.14)

and

Vol(V (x) ∩ B(x, r)) ≥ C(1 ∧ r)d for all r > 0, (3.15)

where C > 0 is a constant depending on d and ε0.

Proof Let ε ∈ (0, ε0]. We first prove (3.14). On the one hand, for each i and x ∈
Uε ∩ B(yi , ε0/2), by the δ-cone property of U , we have C (x, ξyi , ε0/2) ⊂ U , which
implies that

dist
(
C (x, ξyi , ε0/2), ∂U

)
:= inf

{
|z − y| : z ∈ C (x, ξyi , ε0/2), y ∈ ∂U

}
> 0.
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Since the function x �→ dist(C (x, ξyi , ε0/2), ∂U ) is continuous on the compact set
Uε ∩ B(yi , ε0/2), we can find cε,i > 0 such that dist(C (x, ξyi , ε0/2), ∂U ) ≥ cε,i for
all x ∈ Uε ∩ B(yi , ε0/2).

On the other hand, for x ∈ Uε\⋃m
i=1 B(yi , ε0/2), we have B(x, ε0/2) ⊂ U , and

hence

dist(B(x, ε0/2), ∂U ) > 0.

Then, by the continuity of x �→ dist(B(x, ε0/2), ∂U ) and the compactness of
Uε\⋃m

i=1 B(yi , ε0/2), we can find cε,0 > 0 such that dist(B(x, ε0/2), ∂U ) ≥ cε,0
for all x ∈ Uε \ ⋃m

i=1 B(yi , ε0/2).
Therefore, by taking cε = min{cε,i : 0 ≤ i ≤ m}, we get that dist(V (x), ∂U ) ≥ cε.

Also, note that for 1 ≤ i ≤ m, we have 0 < cε,i ≤ ε, so cε → 0 as ε → 0. This
proves (3.14).

As for (3.15), if V (x) = C (x, ξyi , ε0/2) in case (1) of (3.13), then

Vol(V (x) ∩ B(x, r)) = Vol(C (x, ξyi , ε0/2) ∩ B(x, r))

= Vol{z ∈ R
d : 0 ≤ |z − x | < (ε0/2) ∧ r and (z − x)

· ξyi ≥ |z − x | cos(ε0/2)}
= Cd,ε0((ε0/2) ∧ r)d ≥ Cd,ε0(ε0/2)

d(1 ∧ r)d .

If V (x) = B(x, ε0/2) in case (2) of (3.13), then

Vol(V (x) ∩ B(x, r)) = Vol(B(x, (ε0/2) ∧ r)) = Cd((ε0/2) ∧ r)d

≥ Cd(ε0/2)
d(1 ∧ r)d .

This shows (3.15) and completes the proof of Lemma 3.10. ��

4 Bounded initial condition case

In this section, we give some computations to show how the noise interacts with the
differential operator. Let us first give a general definition, which is not only restricted
to the heat equation.

Definition 4.1 LetU be a general domain in R
d and let G(t, x, y) be the fundamental

solution to the corresponding partial differential equation. Let f be a nonnegative,
nonnegative definite function. Let hU0 (t) be a locally integrable function defined on
R+ := [0,∞). Define formally the following functions:

KU
λ (t) :=

∞∑

n=0

λ2nhUn (t) (4.1a)
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where

hUn (t) :=
(
kU ∗ hUn−1

)
(t) for n ≥ 1 and, (4.1b)

kU (t) := sup
x,x ′∈U

∫∫

U2
G(t, x, y)G(t, x ′, y′) f (y − y′) dy dy′. (4.1c)

These functions depend on the fundamental solution G. When it is clear from the
context, the superscript U will be omitted.

In the above, “∗" is the standard convolution in the time variable:

h ∗ k(t) =
∫ t

0
h(t − s)k(s)ds.

For n ≥ 1, we will also denote by k∗n the n-th convolution power of k, i.e., k∗1 = k
and

k∗(n+1)(t) =
∫ t

0
k∗n(t − s)k(s)ds.

Remark 4.2 In [14] and [12], the kernel function k(t) is defined as

k(t) =
∫

Rd
f (z)G(t, z)dz,

where G(t, x) is the heat kernel on R
d . This is consistent to (4.1c) (up to a factor of

2):

kR
d
(t) = sup

x,x ′∈Rd

∫∫

R2d
G(t, x − y)G(t, x ′ − y′) f (y − y′)dydy′

= sup
x,x ′∈Rd

∫∫

R2d
G(t, x − y)G(t, x ′ − y + z) f (z)dzdy

= sup
x,x ′∈Rd

∫

Rd
G(2t, x − x ′ − z) f (z)dz =

∫

Rd
G(2t, z) f (z)dz.

The following two lemmas provide estimates for kU (t) in the case of the Dirichlet
and Neumann heat kernel, respectively. In particular, for the case of L = −�, our
lower and upper bounds generalize (3.3) and (3.5) of [33] from U being an open ball
to more general domains.

Lemma 4.3 If U is a bounded Lipschitz domain, then we have the following integral
estimates for the Dirichlet heat kernel:

(i) There exists a positive finite constant C such that for all t > 0, for all x, x ′ ∈ U,

∫∫

U×U
GD(t, x, y)GD(t, x ′, y′) f (y− y′) dy dy′ ≤ Ce−2μ1t (1∧ t)−β/2. (4.2)
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(ii) There exists 0 < ε0 < 1 such that for any 0 < ε ≤ ε0, there exists a positive finite
constant Cε such that for all t > 0, for all x, x ′ ∈ Uε with |x − x ′| ≤ √

t ,

∫∫

U×U
GD(t, x, y)GD(t, x ′, y′) f (y−y′) dy dy′ ≥ Cεe

−2μ1t (1∧t)−β/2. (4.3)

Proof

(i) Let I be the left-hand side of (4.2), By (1.6) and the upper bound in (3.6),

I ≤ Ce−2μ1t
(∫∫

U2
|y − y′|−β dy dy′ 1{t≥1}

+
∫∫

U2

1

td/2 e−c1
|x−y|2

t
1

td/2 e−c1
|x ′−y′|2

t |y − y′|−β dy dy′ 1{t<1}
)

.

The first integral is a finite constant since β < d. For the second integral, we can
enlarge the domain of integration to R

d × R
d and use the Plancherel theorem to

get the upper bound

C
∫

Rd
e−i(x−x ′)·ξ e− 2

c1
t |ξ |2 |ξ |β−ddξ ≤ C

∫

Rd
e
− 2

c1
t |ξ |2 |ξ |β−ddξ = C ′t−β/2.

The last equality can be obtained by scaling. This proves the upper bound (4.2).
(ii) We now turn to the proof of the lower bound (4.3). Let t > 0 and x, x ′ ∈ Uε be

such that |x − x ′| ≤ √
t . By (1.6), we have

I ≥ Ce−2μ1t
(∫∫

Uε×Uε

GD(t, x, y)GD(t, x ′, y′)|y − y′|−β dy dy′ 1{t≥1}

+
∫∫

U×U
GD(t, x, y)GD(t, x ′, y′)|y − y′|−β dy dy′ 1{t<1}

)
.

(4.4)

We estimate the two integrals separately. Since U is bounded, supy,y′∈U |y − y′| ≤
M < ∞. By the lower bounds in (3.6) and (3.9), the first integral in (4.4) is bounded
below by

C2
2 (1 ∧ (c−1

0 εa1))4e−2c2M2
M−β

[
Vol(Uε)

]21{t≥1} = Cε1{t≥1}.

By the lower bound in (3.6), the second integral in (4.4) is bounded below by

∫∫

V (x)×V (x ′)
C2
2 (1 ∧ 
1(x))(1 ∧ 
1(y))(1 ∧ 
1(x

′))(1 ∧ 
1(y
′))

× 1

td
e−2c21{|x−y|≤√

t, |x ′−y′|≤√
t}|y − y′|−β dy dy′ 1{t<1}.

(4.5)

123



Stoch PDE: Anal Comp

Since |x−x ′| ≤ √
t , we have |y− y′| ≤ 3

√
t on the set {|x− y| ≤ √

t, |x ′− y′| ≤ √
t}.

By (3.9) and Lemma 3.10, for 0 < ε ≤ ε0, (4.5) is bounded below by

C2
2 (1 ∧ (c−1

0 εa1))2(1 ∧ (c−1
0 ca1ε ))2t−de−2c2(3

√
t)−β

× Vol(V (x) ∩ B(x,
√
t)) × Vol(V (x ′) ∩ B(x ′,

√
t)) 1{t<1}

≥ Cεt
−β/2 1{t<1}.

With this, we complete the proof of Lemma 4.3. ��
Lemma 4.4 If U is a bounded Lipschitz domain, then we have the following integral
estimates for the Neumann heat kernel:

(i) There exists a positive finite constant C1 such that for all t > 0, for all x, x ′ ∈ U,

∫∫

U2
GN (t, x, y)GN (t, x ′, y′) f (y − y′) dy dy′ ≤ C1(1 ∧ t)−β/2. (4.6)

(ii) If (3.8) holds, then there exists a positive finite constant C2 such that for all t > 0,
for all x, x ′ ∈ U with |x − x ′| ≤ √

t ,

∫∫

U2
GN (t, x, y)GN (t, x ′, y′) f (y − y′) dy dy′ ≥ C2(1 ∧ t)−β/2. (4.7)

The proof of Lemma 4.4 follows the same strategy as that of Lemma 4.3. We will
leave it to the interested readers.

Lemmas 4.3 and 4.4 suggest the study of the following functions.

Definition 4.5 Let K̂λ(t) and ĥn(t) be defined as (4.1a) and (4.1b), respectively, except
that hU0 (t) and kU (t) in (4.1c) be replaced, respectively, by

ĥ0(t) ≡ 1 and k̂(t) = (1 ∧ t)−ρ with ρ ∈ (0, 1), (4.8)

namely,

K̂λ(t) :=
∞∑

n=0

λ2nĥn(t) and ĥn(t) := (̂
k∗n ∗ 1

)
(t) for n ≥ 1.

Before proceeding to the next lemma, we recall some useful formulas and inequal-
ities:

• From the Beta integral (see, e.g., [34]), we have that for all t > 0, n ≥ 2, and
r0, r1, . . . , rn > −1,

∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sn−1

0
dsn(t − s1)

r0(s1 − s2)
r1 . . . (sn−1 − sn)

rn−1srnn

=
∏n

i=0 �(1 + ri )

�(n + ∑n
i=0 ri + 1)

tn+∑n
i=0 ri .

(4.9)
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• For any a > 0, there exist positive finite constants C and c depending on a such
that

cn(n!)a ≤ �(an + 1) ≤ Cn(n!)a, for all integers n ≥ 0. (4.10)

This inequality can be easily verified using Stirling’s formula; see (68) of [2].
• The following result is proved in [2, Lemma A.1] and [3, Lemma 5.2]: For any
a > 0, there exist positive finite constants C1,C2,C3,C4 depending on a such
that for all x > 0,

C1 exp(C2x
1/a) ≤

∞∑

n=0

xn

(n!)a ≤ C3 exp(C4x
1/a). (4.11)

Lemma 4.6 Let λ > 0. Let K̂λ(t) and ĥn(t) be defined as in Definition 4.5. Then:

(i) The function t �→ ĥn(t) is nondecreasing for each n ≥ 0.
(ii) There exist positive finite constants C1 and C2 depending only on ρ such that for

all t > 0, for all integers n ≥ 1,

((1 − ρ)/2)ntn
n∑

k=0

Ck
1 t

−kρ

(n − k)!(k!)1−ρ
≤ ĥn(t) ≤ tn

n∑

k=0

Ck
2 t

−kρ

(n − k)!(k!)1−ρ
. (4.12)

(iii) There exist positive finite constants C3, . . . ,C8 depending only on ρ such that for
all t > 0,

C3 exp
(
t
(
C4λ

2 + C5λ
2

1−ρ

))
≤ K̂λ(t) ≤ C6 exp

(
t
(
C7λ

2 + C8λ
2

1−ρ

))
.

(4.13)
(iv) For any p ≥ 1 and t > 0, it holds that

∑∞
n=0

[
λ2nĥn(t)

]1/p
< ∞.

Proof

(i) Obviously, ĥ0 is nondecreasing. Suppose ĥn is nondecreasing. Then

ĥn+1(t) =
∫ t

0
(1 ∧ (t − s))−ρ ĥn(s)ds =

∫ t

0
(1 ∧ s)−ρ ĥn(t − s)ds,

which is also nondecreasing (see also the proof of Lemma 2.6 of [14]).
(ii) By expanding ĥn(t) recursively, we see that

ĥn(t) =
∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sn−1

0
dsn

n∏

i=1

(1 ∧ (si−1 − si ))
−ρ,

where s0 = t . Note that

1

2
(1 + x−ρ) ≤ (1 ∧ x)−ρ ≤ 1 + x−ρ for all x ≥ 0. (4.14)
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So, in order to prove (4.12), it suffices to prove that

(1 − ρ)ntn
n∑

k=0

Ck
1 t

−kρ

(n − k)!(k!)1−ρ
≤ h∗

n(t) ≤ tn
n∑

k=0

Ck
2 t

−kρ

(n − k)!(k!)1−ρ
, (4.15)

where

h∗
n(t) =

∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sn−1

0
dsn

n∏

i=1

(
1 + (si−1 − si )

−ρ
)
.

We observe that

n∏

i=1

(1 + (si−1 − si )
−ρ) =

n∑

k=0

∑

1≤i1<i2<···<ik≤n

k∏

j=1

(si j−1 − si j )
−ρ,

where we have used the convention that when k = 0 the summation and product inside
gives one. Then, by (4.9), we have

h∗
n(t) =

n∑

k=0

∑

1≤i1<i2<···<ik≤n

∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ sn−1

0
dsn

k∏

j=1

(
si j−1 − si j

)−ρ

=
n∑

k=0

(
n

k

)
�(1 − ρ)k

�(n − kρ + 1)
tn−kρ.

(4.16)

By the recursion identity of the Gamma function �(z + 1) = z�(z), we have

�(n − kρ + 1) = �
(
k(1 − ρ) + 1

) n−k∏

j=1

(
k(1 − ρ) + j

)
.

Because 0 < ρ < 1, for all 0 ≤ j ≤ n, it holds that (1− ρ)(k + j) < k(1− ρ)+ j <

k + j and hence,

(1 − ρ)n−k n!
k! � (k(1 − ρ) + 1) ≤ � (n − kρ + 1) ≤ n!

k! � (k(1 − ρ) + 1) .

Also, by (4.10), ck(k!)1−ρ ≤ �(k(1 − ρ) + 1) ≤ Ck(k!)1−ρ . Hence, it follows that

(1 − ρ)n−k ck
n!

(k!)ρ ≤ �(n − kρ + 1) ≤ Ck n!
(k!)ρ . (4.17)

Putting this back into (4.16), we get (4.15) with C1 = C−1�(2 − ρ) and C2 =
c−1 (1 − ρ)−1 �(1 − ρ). Hence, (4.12) follows.

As for part (iii), using (4.12), interchanging the order of summation and apply-
ing (4.11) yield (4.13). Finally, for part (iv), after an application of the sub-additivity
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of the function x �→ x1/p to the far right-hand side of (4.12), one can carry out the
same arguments as the proof of the upper bound of (4.13) to show that the series in
question converges. This completes the proof of Lemma 4.6. ��

The above lemma plays the same role as, e.g., Lemma A.2 of [11] where the kernel
function k(t) takes the form of (t − s)−ρ . In that case, the computations can be made
explicit by using the Mittag-Leffler function. Indeed, Lemma 4.6 can be rephrased as
the Gronwall-type lemma below.

Lemma 4.7 (Gronwall-type Lemma) Let λ ∈ R+, ρ ∈ (0, 1), k̂(t) = (1 ∧ t)−ρ and
b : R+ → R+ be a nonnegative function. Suppose that H : R+ → R+ is a locally
integrable nonnegative function such that for all t ≥ 0,

H(t) ≤ b(t) + λ2
∫ t

0
k̂(t − s)H(s)ds. (4.18)

Then

H(t) ≤ b(t) +
∞∑

n=1

λ2n
(̂
k∗n ∗ b

)
(t). (4.19)

Remark 4.8 The following variation will not be used in this paper but it is worth noting
that if b(t) ≥ 0 and “≤” in (4.18) is replaced by “≥” (resp. “=”), then we will obtain
the conclusion (4.19) with “≤” replaced by “≥” (resp. “=”). This can be shown by
the same proof below.

Proof of Lemma 4.7 Using (4.18) inductively, we get that for any t ≥ 0, for any N ≥ 1,

H(t) ≤ b(t) +
N−1∑

n=1

λ2n
(̂
k∗n ∗ b

)
(t) + λ2N

(
k̂∗N ∗ H

)
(t).

Similarly to the proof of Lemma 4.6(ii), we can use (4.9) to deduce that

k̂∗N (t) ≤
N∑

k=0

(
N

k

)
�(1 − ρ)k

�(N − kρ)
t N−1−kρ.

Then, by (4.17) and the bound
(N
k

) ≤ 2N , we have

(
k̂∗N ∗ H

)
(t) ≤

∫ t

0
H(t − s)

N∑

k=0

C̃ N

(N !)1−ρ
sN−1−kρds.

Since 0 < ρ < 1, if N is large enough, then N − 1 − kρ ≥ N − 1 − Nρ

= N (1 − ρ) − 1 > 0 for all k ≤ N , and hence

λ2N
(
k̂∗N ∗ H

)
(t) ≤ (λ2C̃)N

(N !)1−ρ
N
(
t N−1 + t N (1−ρ)−1)

∫ t

0
H(t − s)ds.
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Since H is locally integrable, λ2N (̂k∗N ∗ H)(t) → 0 as N → ∞ and (4.19)
follows. ��

4.1 Proof of part (i) of Theorem 1.4

Nowwe are ready to prove Theorem 1.4 for the case where the initial data is bounded.

Proof of Theorem 1.4 (the bounded initial data case) Here we assume that the initial
condition ν is absolutely continuous with respect to the Lebesgue measure with a
bounded density g, namely, ν(dx) = g(x)dx and g ∈ L∞(U ). The proof follows a
standard Picard iteration scheme. Let u0(t, x) = J (t, x) (see (3.3)) and for n ≥ 1,

un(t, x) = J (t, x) + λ

∫ t

0

∫

U
G(t − s, x, y)σ (s, y, un−1(s, y))W (ds, dy).

By Burkholder’s inequality and Minkowski’s inequality, for all p ≥ 2, n ≥ 2,

sup
0<s≤t

||un(s, x) − un−1(s, x)||2p

≤ CpL
2
σ λ2

∫ t

0
ds

∫∫

U2
G(t − s, x, y) f (y − y′)G(t − s, x, y′)

× sup
z∈U

||un−1(s, z) − un−2(s, z)||2p dy dy′,

where Cp is a constant depending only on p. By Lemma 4.3 (for the Dirichlet case)
or Lemma 4.4 (for the Neumann case),

sup
x∈U

∫∫

U2
G(t − s, x, y) f (y − y′)G(t − s, x, y′) dy dy′

≤ Ce−2μ(t−s)(1 ∧ (t − s))−β/2,

where μ = μ1 in the Dirichlet case and μ = 0 in the Neumann case. Let

Hn(t) := e2μt sup
(s,x)∈(0,t]×U

||un(s, x) − un−1(s, x)||2p .

It follows that for all n ≥ 2,

Hn(t) ≤ a
∫ t

0
Hn−1(s)(1 ∧ (t − s))−β/2ds, (4.20)

where a = CpCL2
σ λ2, and for n = 1,

H1(t) ≤ a ||g||2L∞(U )

∫ t

0
e2μs(1 ∧ (t − s))−β/2ds.
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For any t ∈ [0, T ] with T fixed, using the notation in Definition 4.5 with ρ = β/2,
the above bound can be written as H1(t) ≤ CT a(̂k ∗ ĥ0)(t) for some constant CT , and
we have Hn(t) ≤ CT anĥn(t) for all n ≥ 0. Hence, we can apply Lemma 4.6(iv) with
p = 2 to see that

∑∞
n=1 H

1/2
n (t) < ∞. This implies that un(t, x) converges to some

u(t, x) in L p(�) which satisfies (3.2) and (1.17).
For the uniqueness, suppose that u and ũ are two mild solutions satisfying (1.17)

with p = 2. By Burkholder’s inequality with p = 2 and similar calculations to those
above, we get that

H(t) ≤ Cλ2L2
σ

∫ t

0
H(s)(1 ∧ (t − s))−β/2ds, for all t > 0,

where H(t) := sup(s,x)∈(0,t]×U ||u(s, x) − ũ(s, x)||22. The condition (1.17) implies
that H is locally bounded. Then we can apply the Gronwall-type Lemma 4.7 with
b(t) ≡ 0 to see that H(t) ≡ 0, i.e., u(t, x) = ũ(t, x) a.s. This completes the proof of
Theorem 1.4 in the case where the initial measure has a bounded density. ��

5 The p-th moment bounds and rough initial data

Our next task is to establish more bounds for the convolution-type integrals of the heat
kernels. Specifically, we seek optimal upper and lower bounds for the integral:

∫∫

U×U
G(t − s, x, z)G(t − s, x ′, z′) f (z − z′)G(s, z, y)G(s, z′, y′) dz dz′.

The following identity plays a key role in the estimation of the above integral: for all
0 < s < t and v,w ∈ R

d ,

exp

(
−C

|v|2
t − s

)
exp

(
−C

|v − w|2
s

)
= exp

(
−C

|w|2
t

)
exp

(
−C

|v − t−s
t w|2

(t − s)s/t

)
.

(5.1)
This identity can be verified by direct calculations; see [14, p.657]. It can also be
interpreted as an expression for the density of the Brownian bridge in terms of a
conditional density; see [4, Chapter 6].

Lemma 5.1 If U is a bounded Lipschitz domain, then we have the following integral
estimates:

(i) There exists a finite constant C such that for all 0 < s < t , for all x, x ′, y, y′ ∈ U,

∫∫

U×U

e−2μ1(t−s)

1 ∧ (t − s)d
e−c1

|x−z|2+|x ′−z′ |2
t−s

e−2μ1s

1 ∧ sd
e−c1

|z−y|2+|z′−y′ |2
s f (z − z′) dz dz′

≤ C
e−2μ1t

1 ∧ td
e−c1

|x−y|2+|x ′−y′|2
t

(
1 ∧ (t − s)s

t

)−β/2

.

(5.2)
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(ii) IfU is convex, then there exists 0 < ε0 < 1 such that for all 0 < ε ≤ ε0, there exists
a positive finite constant Cε such that for all 0 < s < t , for all x, x ′, y, y′ ∈ Uε

with |x − x ′| ≤ √
(t − s)s/t and |y − y′| ≤ √

(t − s)s/t ,

∫∫

U×U
G̃D(t − s, x, x ′, z, z′)G̃D(s, z, z′, y, y′) f (z − z′) dz dz′

≥ Cε

e−2μ1t

1 ∧ td
e−c2

|x−y|2+|x ′−y′ |2
t

(
1 ∧ (t − s)s

t

)−β/2

.

(5.3)

Proof

(i) Denote the left-hand side of (5.2) by I . By (1.6),

I ≤ C f C
4
1 e

−2μ1t 1

(1 ∧ (t − s)d)(1 ∧ sd)
∫∫

U2
e
−c1

(
|x−z|2
t−s + |x ′−z′ |2

t−s + |z−y|2
s + |z′−y′|2

s

)

|z − z′|−β dz dz′

= C f C
4
1 e

−2μ1t e
−c1

(
|y−x |2

t + |y′−x ′ |2
t

)

× 1

(1 ∧ (t − s)d)(1 ∧ sd)
∫∫

U2
e
−c1

(
|(z−x)− t−s

t (y−x)|2
(t−s)s/t + |(z′−x ′)− t−s

t (y′−x ′)|2
(t−s)s/t

)

|z − z′|−β dz dz′.

For the last equality, we have applied the identity (5.1) with v = z − x and
w = y − x , and also with v′ = z′ − x ′ and w′ = y′ − x ′. Set τ = (t − s)s/t .
We claim that there exists a finite constant C such that for all a, a′ ∈ R

d , for all
τ > 0,

I ′ :=
∫∫

U2
e
−c1

(
|z−a|2

τ
+ |z′−a′|2

τ

)

|z − z′|−β dz dz′ ≤ C(1 ∧ τ)d−β/2. (5.4)

Indeed, if τ ≥ 1, then (5.4) holds since β < d. If τ < 1, then by the Plancherel
theorem,

I ′ ≤
∫∫

Rd×Rd
e
−c1

(
|z−a|2

τ
+ |z′−a′ |2

τ

)

|z − z′|−β dz dz′

= Cτ d
∫

Rd
e−i(a−a′)·ξ e− 2

c1
τ |ξ |2 |ξ |β−ddξ

≤ Cτ d
∫

Rd
e
− 2

c1
τ |ξ |2 |ξ |β−ddξ = C ′τ d−β/2,

123



Stoch PDE: Anal Comp

where the last equality can be obtained by a scaling argument. This verifies (5.4)
and hence the following:

I ≤ Ce−2μ1t e
−c1

(
|y−x |2

t + |y′−x ′|2
t

)

h(s, t)

(
1 ∧ (t − s)s

t

)−β/2

,

where

h(s, t) := 1

(1 ∧ (t − s)d)(1 ∧ sd)

(
1 ∧ (t − s)dsd

td

)
.

It can be verified by straightforward calculations that if t − s < 1 and s < 1, then
h(s, t) ≤ t−d ; otherwise, h(s, t) ≤ 1. Therefore, we obtain the upper bound (5.2).

(ii) To prove the lower bound (4.3), let 0 < s < t and x, x ′, y, y′ ∈ Uε be such that
|x − x ′| ≤ √

(t − s)s/t and |y − y′| ≤ √
(t − s)s/t . Denote the left-hand side

of (4.3) by Ĩ . By (1.6), (3.6), (3.9) and (5.1), we have that

Ĩ ≥ Cε
e−2μ1t

(1 ∧ (t − s)d )(1 ∧ sd )
e
−c2

(
|y−x |2

t + |y′−x ′ |2
t

)
∫∫

U×U
dzdz′

× (1 ∧ 
1(z))
2(1 ∧ 
1(z

′))2e
−c2

(
|(z−x)− t−s

t (y−x)|2
1∧τ

+ |(z′−x ′)− t−s
t (y′−x ′)|2

1∧τ

)

|z − z′|−β

=: A, with τ = (t − s)s/t .

Now, we consider the following two cases: τ ≥ 1 and τ < 1. In the rest of the
proof, the constant Cε above will be used to denote a generic constant that depends
on ε, whose value may change at each appearance.
Case1. Suppose τ ≥ 1.Observe that (1∧(t−s)d)(1∧sd) ≤ 1∧td and (1∧τ)−β/2 = 1.
Also, by supy,y′∈D |y − y′| ≤ M < ∞ and (3.9), we see that

A ≥ Cε

e−2μ1t

1 ∧ td
e
−c2

(
|y−x |2

t + |y′−x ′ |2
t

) ∫∫

Uε×Uε

(1 ∧ (c−1
0 εa1))4e−2c2M2

M−β dz dz′

= Cε

e−2μ1t

1 ∧ td
e
−c2

(
|y−x |2

t + |y′−x ′ |2
t

)

(1 ∧ τ)−β/2,

which proves (5.3).
Case 2. Suppose τ < 1. In this case, 1 ∧ τ = τ . Notice that

(z − x) − t − s

t
(y − x) = z − a, where a := s

t
x + t − s

t
y,

and a′ is defined similarly. The convexity assumption onU ensures that both a and a′
are in Uε. By Lemma 3.10, for 0 < ε ≤ ε0,

A ≥ Cε

e−2μ1t

(1 ∧ (t − s)d)(1 ∧ sd)
e
−c2

(
|y−x |2

t + |y′−x ′|2
t

)
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×
∫∫

E(a)×E(a′)
e−2c21{|z−a|≤√

τ , |z′−a′|≤√
τ }|z − z′|−β dz dz′.

Since |x−x ′| ≤ √
τ and |y−y′| ≤ √

τ , we have |a−a′| ≤ √
τ . Hence, |z−z′| ≤ 3

√
τ

on the set {|z − a| ≤ √
τ , |z′ − a′| ≤ √

τ }. Also, by (3.15), it follows that

A ≥ Cε

e−2μ1t

(1 ∧ (t − s)d)(1 ∧ sd)
e
−c2

(
|y−x |2

t + |y′−x ′ |2
t

)

τ d−β/2.

To finish the proof, it remains to show that the following bound holds for some constant
c > 0:

τ d

(1 ∧ (t − s)d)(1 ∧ sd)
≥ c

1 ∧ td
. (5.5)

Indeed, for t ≤ 2, we can use the bound

τ d

(t − s)dsd
= 1

td
= 1

2 ∧ td
≥ 1

2(1 ∧ td)
.

For t > 2, consider the following two cases. If s < t/2, then t − s > t/2 > 1 and
hence

τ d

(1 ∧ (t − s)d)(1 ∧ sd)
= τ d

sd
= (t − s)d

td
≥ 1

2d
= 1

2d(1 ∧ td)
.

If s ≥ t/2, which is > 1, then

τ d

(1 ∧ (t − s)d)(1 ∧ sd)
= τ d

(t − s)d
= sd

td
≥ 1

2d
= 1

2d(1 ∧ td)
.

This proves (5.5) and completes the proof of the lower bound (5.3). ��
Lemma 5.2 If U is a bounded Lipschitz domain, then we have the following integral
estimates:

(i) There exists a positive finite constant C such that for all 0 < s < t , for all
x, x ′, y, y′ ∈ U,

∫∫

U×U
G̃N (t − s, x, x ′, z, z′)G̃N (s, z, z′, y, y′) f (z − z′) dz dz′

≤ C

1 ∧ td
e−c3

|x−y|2+|x ′−y′|2
t

(
1 ∧ (t − s)s

t

)−β/2

.

(5.6)

(ii) If U is convex and (3.8) holds, then there exists a positive finite constant C such
that for all 0 < s < t , for all x, x ′, y, y′ ∈ U with |x − x ′| ≤ √

(t − s)s/t and
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|y − y′| ≤ √
(t − s)s/t ,

∫∫

U×U
G̃N (t − s, x, x ′, z, z′)G̃N (s, z, z′, y, y′) f (z − z′) dz dz′

≥ C

1 ∧ td
e−c4

|x−y|2+|x ′−y′ |2
t

(
1 ∧ (t − s)s

t

)−β/2

.

(5.7)

The proof of Lemma 5.2 is similar to that of Lemma 5.1, whichwill be left to interested
readers.

Lemma 5.3 Let 0 < ρ < 1. Define h̃0(t) ≡ 1 and for n ≥ 1

h̃n(t) :=
∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ sn−1

0
dsn

n∏

j=1

(
1 ∧ (s j−1 − s j )s j

s j−1

)−ρ

, (5.8)

where we use the convention that s0 = t . Then, for all t > 0, for all integers n ≥ 0,

2−nĥn(t) ≤ h̃n(t) ≤
(
21+ρ

)n
ĥn(t), (5.9)

where ĥn(t) is as defined in Lemma 4.6. Moreover, for any λ > 0, there exists positive
finite constants C3, . . . ,C8 such that

C3 exp
(
t
(
C4λ

2 + C5λ
2

1−ρ

))
≤

∞∑

n=0

λ2nh̃n(t) ≤ C6 exp
(
t
(
C7λ

2 + C8λ
2

1−ρ

))
.

(5.10)

Proof The estimate (5.9) can be deduced using Lemma 4.17 of [4]. For completeness,
we provide a direct proof. We prove (5.9) by induction. Clearly, it holds for n = 0.
Suppose it holds for some n ≥ 0. Since (t − s)s/t ≥ s/2 for s ∈ [0, t/2] and
(t − s)s/t ≥ (t − s)/2 for s ∈ [t/2, t], we have

h̃n+1(t) =
∫ t

0

(
1 ∧ (t − s)s

t

)−ρ

h̃n(s) ds

≤ 2ρ(21+ρ)n
∫ t/2

0
(1 ∧ s)−ρ ĥn(s) ds

+ 2ρ(21+ρ)n
∫ t

t/2
(1 ∧ (t − s))−ρ ĥn(s) ds

= 2ρ

∫ t

t/2
(1 ∧ (t − s))−ρ ĥn(t − s) ds + 2ρ

∫ t

t/2
(1 ∧ (t − s))−ρ ĥn(s) ds.
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Since t − s ≤ s for s ∈ [t/2, t], and ĥn(·) is nondecreasing by Lemma 4.6, we see
that

h̃n+1(t) ≤ 2ρ(21+ρ)n
∫ t

t/2
(1 ∧ (t − s))−ρ ĥn(s) ds

+ 2ρ(21+ρ)n
∫ t

t/2
(1 ∧ (t − s))−ρ ĥn(s) ds

≤ 21+ρ(21+ρ)n
∫ t

0
(1 ∧ (t − s))−ρ ĥn(s) ds

≤ (21+ρ)n+1ĥn+1(t),

where we have applied (4.14) in the last step. This proves the upper bound of (5.9).
On the other hand, for the lower bound, it holds clearly for n = 0. For general n ≥ 1,
by the bound (t − s)s/t ≤ t − s for all s ∈ [0, t], the induction hypothesis and (4.14),
we have

h̃n+1(t) ≥ 2−n
∫ t

0
(1 ∧ (t − s))−ρ ĥn(s) ds

≥ 2−n−1
∫ t

0

(
1 + (t − s)−ρ

)
ĥn(s) ds

= 2−(n+1)ĥn+1(t).

Finally, (5.10) follows clearly from (5.9) and (4.13). This proves Lemma 5.3. ��
Recall the following form of Burkholder’s inequality [28, Theorem B.1]: For any

p ∈ [2,∞) and any continuous L2-martingale {Mt , t ≥ 0},

E(|Mt |p) ≤ (4p)p/2E(〈M〉p/2t ), (5.11)

where 〈M〉t denotes the quadratic variation of Mt .

5.1 Proof of part (ii) of Theorem 1.4

Now we are ready to prove the second part of Theorem 1.4.

Proof of Theorem 1.4 (the rough initial data case) We first assume the Dirichlet bound-
ary condition. Let u0(t, x) = J (t, x) and

un(t, x) = J (t, x) + λ

∫ t

0

∫

U
G(t − s, x, y)σ (s, y, un−1(s, y))W (ds, dy) for n ≥ 1.

Let a = 8pλ2L2
σC , where C is the constant in (5.2). We claim that, for all n ≥ 0,

‖un(t, x)‖p ≤ √
2e−μ1t Jc1(t, x)

(
n∑

i=0

ai h̃i (t)

)1/2

for allt > 0, x ∈ U , (5.12)
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where h̃n(t) is defined in (5.8). By Proposition 3.6, (5.12) holds for n = 0. Suppose
that (5.12) is true for some n ≥ 0. By Burkholder’s inequality (5.11) andMinkowski’s
inequality, we get that

‖un+1(t, x)‖2p ≤ 2J 2(t, x) + 8pλ2L2
σ In(t, x),

where

In(t, x) :=
∫ t

0
ds

∫∫

U2
dy dy′GD(t − s, x, y)GD(t − s, x, y′) f (y − y′)

‖un(s, y)‖p‖un(s, y′)‖p.

By the induction hypothesis,

In(t, x) ≤ 2
∫ t

0
ds

∫∫

U2
dy dy′ f (y − y′)GD(t − s, x, y)GD(t − s, x, y′)

× |J (s, y)| |J (s, y′)|
(

n∑

i=0

ai h̃i (s)

)

≤ 2
n∑

i=0

ai
∫ t

0
ds h̃i (s)

∫∫

U2
dy dy′ f (y − y′)GD(t − s, x, y)GD(t − s, x, y′)

×
∫∫

U2
|ν|(dz)|ν|(dz′)GD(s, y, z)GD(s, y, z′).

Now interchange the order of the two double integrals and apply Lemma 5.1(i) to get
that

In(t, x) ≤ 2
n∑

i=0

ai
∫ t

0
ds h̃i (s)

∫∫

U2
|ν|(dz)|ν|(dz′)

× C
e−2μ1t

1 ∧ td
e−c1

|x−z|2+|x−z′ |2
t

(
1 ∧ (t − s)s

t

)−β/2

= 2Ce−2μ1t J 2c1(t, x)
n∑

i=0

ai
∫ t

0
ds

(
1 ∧ (t − s)s

t

)−β/2

h̃i (s)

= 2Ce−2μ1t J 2c1(t, x)
n∑

i=0

ai h̃i+1(t).

Recall that a = 8pλ2L2
σC . Hence,

‖un+1(t, x)‖2p ≤ 2e−2μ1t J 2c1(t, x) + 16pλ2L2
σCe−2μ1t J 2c1(t, x)

n∑

i=0

ai h̃i+1(t)
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= 2e−2μ1t J 2c1(t, x)
n+1∑

i=0

ai h̃i (t).

This proves (5.12).
Next, we prove that un(t, x) is a Cauchy sequence in L p(�). Let u−1(t, x) = 0.

By Burkholder’s inequality (5.11) and Minkowski’s inequality,

||um(t, x) − un(t, x)||2p
≤ 4pλ2L2

σ

∫ t

0
ds

∫∫

U2
dy dy′GD(t − s, x, y)GD(t − s, x, y′) f (y − y′)

× ‖um−1(s, y) − un−1(s, y)‖p‖um−1(s, y
′) − un−1(s, y

′)‖p.

Then, similarly to the above, we can show by induction that, for all 0 ≤ n < m,

‖um(t, x) − un(t, x)‖p ≤ √
2e−μ1t Jc1(t, x)

(
m∑

i=n+1

ai h̃i (t)

)1/2

for all t > 0 and x ∈ U .

By Lemma 5.3,

∞∑

i=0

ai h̃i (t) ≤ C6e
t

(
C7a+C8a

2
2−β

)

< ∞.

This implies that un(t, x) is a Cauchy sequence in L p(�), and hence converges in
L p(�) to some u(t, x) which satisfies (3.2). In particular, by (5.12) and Lemma 5.3,
we have

‖u(t, x)‖p ≤ √
2e−μ1t Jc1(t, x)

( ∞∑

i=0

(8pλ2L2
σC)i h̃i (t)

)1/2

≤ √
2C6 Jc1(t, x)e

1
2 t

(
8C7Cpλ2L2

σ +C8(8C)
2

2−β p
2

2−β λ
4

2−β L
4

2−β
σ −μ1

)

.

For uniqueness, suppose that u(t, x) and ũ(t, x) are mild solutions of (1.3) satis-
fying (1.19). Let T > 0. Then, for all t ∈ (0, T ], for all x ∈ U ,

‖u(t, x) − ũ(t, x)‖22 ≤ λ2L2
σ

∫ t

0
ds

∫∫

U2
dy dy′GD(t − s, x, x, y1, y

′
1) f (y − y′)

× ‖u(s, y) − ũ(s, y)‖2‖u(s, y′) − ũ(s, y′)‖2.
(5.13)

We claim that there exists CT < ∞ such that for all n ≥ 1, for all t ∈ (0, T ] and all
x ∈ U ,

‖u(t, x) − ũ(t, x)‖22 ≤ 4C2
T J

2
c (t, x)(λLσ )2nh̃n(t), (5.14)
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where h̃n is defined in Lemma 5.3. We prove this claim by induction. First, consider
n = 1. Using the condition that u and ũ both satisfy (1.19), we get that

‖u(t, x) − ũ(t, x)‖22
≤ 4C2

T λ2L2
σ

∫ t

0
ds

∫∫

U2
dy dy′G̃(t − s1, x, x, y1, y

′
1) f (y − y′)Jc(s, y)Jc(s, y′)

= 4C2
T λ2L2

σ

∫∫

U2
|ν|(dz)|ν|(dz′)

×
∫ t

0
ds

∫∫

U2
dy dy′G̃(t − s1, x, x, y1, y

′
1) f (y − y′) 1

1 ∧ sd
e−c |y−z|2+|y′−z′|2

s .

Then, by Lemma 5.1(i),

‖u(t, x) − ũ(t, x)‖22 ≤ 4C2
T λ2L2

σ J
2
c (t, x)

∫ t

0
e−2μ1(t−s)

(
1 ∧ (t − s)s

t

)−β/2

ds

≤ 4C2
T J

2
c (t, x)(λLσ )2

∫ t

0

(
1 ∧ (t − s)s

t

)−β/2

ds.

This proves (5.14) for n = 1. Assume that (5.14) holds for some n ≥ 1. We apply
the induction hyposthesis to ‖u(s, y) − ũ(s, y)‖2 and ‖u(s, y′) − ũ(s, y′)‖2 on the
right-hand side of (5.13) to get

‖u(t, x) − ũ(t, x)‖22 ≤ 4C2
T (λLσ )2(n+1)

∫ t

0
ds h̃n(s)

×
∫∫

U2
dy dy′G̃(t − s1, x, x, y1, y

′
1) f (y − y′)Jc(s, y)Jc(s, y′).

Then, by similar calculations to those in the n = 1 case, we obtain

||u(t, x) − ũ(t, x)||22 ≤ 4C2
T J

2
c (t, x)(λLσ )2(n+1)

∫ t

0
h̃n(s)

(
1 ∧ (t − s)s

t

)−β/2

ds

= 4C2
T J

2
c (t, x)(λLσ )2(n+1)h̃n+1(t).

This proves the claim (5.14). Finally, by Lemma 5.3, we have
∑∞

n=0(λLσ )2nh̃n(t) <

∞, which implies that (λLσ )2nh̃n(t) → 0 as n → ∞. Hence, by (5.14), u(t, x) =
ũ(t, x) a.s.

The case of the Neumann boundary condition can be proved in the sameway except
that Lemma 5.2 (i) is applied in place of Lemma 5.1 (i). This completes the proof of
part (ii) of Theorem 1.4. ��

123



Stoch PDE: Anal Comp

6 The two-point correlation function

6.1 A general formula for the two-point correlation function

The authors in [14] have defined and studied the space-time convolution-type operator
“
” for the heat kernel in the whole space R

d , where the heat kernel G(t, x, y) can
be written as G(t, x − y). However, when the domain is not the whole space R

d , for
example when it is a bounded domain, this translation invariant property is no longer
true and one has to keep the fundamental solution in the form of three parameters. This
natural generalization of the operator “
” for fundamental solutions from those with
two parameters to those with three has been carried out by the first author’s thesis; see
[4, Chapter 5]. Here, let us first briefly recall this generalization.

For two measurable functions k1, k2 : R+ ×U 4 → R, we define

(k1 
 k2)(t, x, x
′, y, y′)

=
∫ t

0
ds

∫∫

U2
dz dz′ k1(t − s, x, x ′, z, z′)k2(s, z, z′, y, y′) f (z − z′) (6.1)

whenever the multiple integral is well-defined. For h : R+ × U 2 → R, we define
k1 
 h = k1 
 h, where h(t, x, x ′, y, y′) := h(t, x, x ′).

Remark 6.1 In [14], where U = R
d , the operator “
” is defined by

(k1 
 k2)(t, x, x
′; y) =

∫ t

0
ds

∫∫

Rd×Rd
dz dz′ k1

(
t − s, x − z, x ′ − z′; y − (z − z′)

)

× k2(s, z, z
′; y) f (y − (z − z′)

)

for measurable functions ki : R+ × R
3 → R, i = 1, 2. The prototype of the function

k is k(t, x, x ′; y) = G(t, x − y)G(t, x ′ − y), which corresponds to (and actually
equals to) J (t, x)J (t, x ′) when the initial condition is ν = δy . But when there is
a lack of space invariance, one has to write this function k as k(t, x, x ′, y, y′) =
G(t, x, y)G(t, x ′, y′). Indeed, introducing one more parameter in the definition of the
convolution operator “
" makes the associative property much more straightforward:
Provided that one can apply Fubini’s theorem to interchange of the order of integration,
one gets that for any measurable functions k1, k2, k3 : R+ ×U 4 → R,

(k1 
 (k2 
 k3))(t, x, x
′, y, y′) = ((k1 
 k2) 
 k3)(t, x, x

′, y, y′). (6.2)

Therefore, it makes sense to write k1 
k2 
k3 without parentheses to specify the order.
Moreover, for any n ≥ 1, we define k
n by k
n := k 
 · · · 
 k︸ ︷︷ ︸

ntimes

.
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Nowweapply this operator to the function G̃(t, x, x ′, y, y′) = G(t, x, y)G(t, x ′, y′).
For any λ > 0 and x, x ′, y, y′ ∈ U , define formally the function Kλ by

Kλ(t, x, x ′, y, y′) :=
∞∑

n=1

λ2nG̃
n(t, x, x ′, y, y′). (6.3)

Specifically, we will write Kλ
D and G̃D when G = GD is the Dirichlet heat kernel,

and write Kλ
N and G̃N when G = GN is the Neumann heat kernel. Upper and lower

bounds for Kλ
D and Kλ

N will be proved later in Propositions 6.5 and 6.7. In particular,
the upper bounds there imply the convergence of the series in (6.3).

The connection between the two-point correlation function and the function Kλ is
given by the next proposition.

Proposition 6.2 Let U be a bounded Lipschitz domain and u(t, x) be the solution
of (1.3) or (1.4). Recall that J (t, x) is the solution to the homogeneous equation;
see (3.3). Let J̃ (t, x, x ′) = J (t, x)J (t, x ′).
(i) If σ(t, x, u) = u for all t > 0, x ∈ U and u ∈ R, then

E(u(t, x)u(t, x ′)) = J̃ (t, x, x ′) +
∞∑

n=1

λ2n(G̃
n 
 J̃ )(t, x, x ′, 0, 0). (6.4)

(ii) If there exists a constant lσ > 0 such that σ(t, x, u) ≥ lσ |u| for all t > 0, x ∈ U,
u ∈ R, then

E(u(t, x)u(t, x ′)) ≥ J̃ (t, x, x ′) +
∞∑

n=1

(λlσ )2n(G̃
n 
 J̃ )(t, x, x ′, 0, 0). (6.5)

(iii) If σ(t, x, u) ≤ Lσu for all t > 0, x ∈ U, u ∈ [0,∞) and u(t, x) ≥ 0 a.s. for all
t > 0 and x ∈ U, then

E(u(t, x)u(t, x ′)) ≤ J̃ (t, x, x ′) +
∞∑

n=1

(λLσ )2n(G̃
n 
 J̃ )(t, x, x ′, 0, 0). (6.6)

Moreover, for any a > 0, we have

J̃ (t, x, x ′) +
∞∑

n=1

a2n(G̃
n 
 J̃ )(t, x, x ′, 0, 0) = a−2
∫∫

U2
Ka(t, x, x ′, y, y′)ν(dy)ν(dy′).

(6.7)

Remark 6.3 Note that case (i) in the above proposition covers the important special
case—the Anderson model. In this case, the two-point correlation function enjoys an
explicit formula, having an equality in (6.4). For the nonlinear case, one needs to either
introduce a cone condition, σ(t, x, u) ≥ lσ |u|, for the lower bounds as in case (ii) or
assume the nonnegativity of solution for the upper bounds as in case (iii).
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Proof of Proposition 6.2 Let u0(t, x) = J (t, x). For n ≥ 1, let

un(t, x) = J (t, x) + λ

∫ t

0

∫

U
G(t − s, x, y)σ (s, y, un−1(s, y))W (ds, dy).

Let ρn(t, x, x ′) := E(un(t, x)un(t, x ′)). From the proof of Theorem 1.4, we have
un(t, x) → u(t, x) in L2(�) as n → ∞, and u(t, x) satisfies (3.2). It follows that
ρn(t, x, x ′) → ρ(t, x, x ′) as n → ∞, where ρ(t, x, x ′) = E(u(t, x)u(t, x ′)).

(i) Suppose that σ(t, x, u) = u for all u ∈ R. Then, we have

E(un(t, x)un(t, x
′))

= J̃ (t, x, x ′) + λ2
∫ t

0
ds

∫∫

U2
dy dy′ G(t − s, x, y) f (y − y′)G(t − s, x ′, y′)E[un−1(s, y)un−1(s, y

′)]
= J̃ (t, x, x ′) + λ2(G̃ 
 ρn−1)(t, x, x

′, 0, 0).

Iterating this, we get

ρn(t, x, x
′) = J̃ (t, x, x ′) + λ2(G̃ 
 ρn−1)(t, x, x

′, 0, 0)

= J̃ (t, x, x ′) +
n∑

m=1

λ2m(G̃
m 
 J̃ )(t, x, x ′, 0, 0).

Then, we let n → ∞ to get (6.4). Note that this also implies that the series

∞∑

n=1

λ2n
(
G̃
n 
 J̃

)
(t, x, x ′, 0, 0)

is convergent for any λ > 0, t > 0 and x, x ′ ∈ U .
(ii) Suppose that σ(t, x, u) ≥ lσ |u| for all t > 0, x ∈ U and u ∈ R. We have

ρn(t, x, x
′) = J̃ (t, x, x ′)

+ λ2
∫ t

0
ds

∫∫

U2
dy dy′ G(t − s, x, y) f (y − y′)G(t − s, x ′, y′)

× E[σ(s, y, un−1(s, y))σ (s, y′, un−1(s, y
′))].

For any s ≥ 0 and y, y′ ∈ U ,

E[σ(s, y, un−1(s, y))σ (s, y′, un−1(s, y
′))] ≥ l2σ E(|un−1(s, y)un−1(s, y

′)|)
≥ l2σ E(un−1(s, y)un−1(s, y

′)).
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It follows that

ρn(t, x, x
′)

≥ J̃ (t, x, x ′) + (λ lσ )2

∫ t

0
ds

∫∫

U2
dy dy′ G(t − s, x, y) f (y − y′)G(t − s, x ′, y′)ρn−1(s, y, y

′)

= J̃ (t, x, x ′) + (λ lσ )2
(
G̃
n 
 ρn−1

)
(t, x, x ′, 0, 0).

By induction,

ρn(t, x, x
′) ≥ J̃ (t, x, x ′) +

n∑

m=1

(λ lσ )2m
(
G̃
m 
 J̃

)
(t, x, x ′, 0, 0).

Then, we let n → ∞ to get (6.5).
(iii) Suppose σ(t, x, u) ≤ Lσu for all t > 0, x ∈ U and u ∈ [0,∞). By the nonnega-

tivity assumption of the solution, we see that

ρ(t, x, x ′)
= E(u(t, x)u(t, x ′))

= J̃ (t, x, x ′) + λ2
∫ t

0
ds

∫∫

U2
dy dy′ G(t − s, x, y) f (y − y′)G(t − s, x ′, y′)

× E[σ(s, y, u(s, y))σ (s, y′, u(s, y′))]
≤ J̃ (t, x, x ′) + (λLσ )2

∫ t

0
ds

∫∫

U2
dy dy′ G(t − s, x, y) f (y − y′)G(t − s, x ′, y′)E[u(s, y)u(s, y′)]

= J̃ (t, x, x ′) + (λLσ )2
(
G̃ 
 ρ

)
(t, x, x ′, 0, 0).

Iterating this, we get,

ρ(t, x, x ′) ≤ J̃ (t, x, x ′) +
n−1∑

m=1

(λLσ )2m
(
G̃
m 
 J̃

)
(t, x, x ′, 0, 0)

+ (λLσ )2n
(
G̃
n 
 ρ

)
(t, x, x ′, 0, 0).

Finally, we let n → ∞ to complete the proof of part (iii).
It remains to prove (6.7). Recall that |ν|(U ) < ∞. By Proposition 6.5(i) or 6.7(i),

for any t > 0 and x, x ′ ∈ U ,

∫∫

U2
Ka(t, x, x ′, y, y′)|ν|(dy)|ν|(dy′) < ∞.
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Then, by the definition (6.3) of Ka and Fubini’s theorem,

a−2
∫∫

U2
Ka(t, x, x ′, y, y′)ν(dy)ν(dy′)

=
∞∑

n=1

a2n−2
∫∫

U2
G̃
n(t, x, x ′, y, y′)ν(dy)ν(dy′).

We compare the right-hand side above with (6.7). For n = 1,

∫∫

U2
G̃(t, x, x ′, y, y′)ν(dy)ν(dy′) = J̃ (t, x, x ′).

For n ≥ 2, by expressing G̃
n = G̃
(n−1) 
 G̃ and interchanging the order of integra-
tion, we have

∫∫

U2
G̃
n(t, x, x ′, y, y′)ν(dy)ν(dy′)

=
∫∫

U2
ν(dy)ν(dy′)

∫ t

0
ds

∫∫

U2
dz dz′ G̃
(n−1)(t − s, x, x ′, z, z′) f (z − z′)G̃(s, z, z′, y, y′)

=
∫ t

0
ds

∫∫

U2
dz dz′ G̃
(n−1)(t − s, x, x ′, z, z′) f (z − z′) J̃ (s, z, z′)

=
(
G̃
(n−1) 
 J̃

)
(t, x, x ′, 0, 0).

This proves (6.7) and completes the proof of Proposition 6.2. ��

6.2 Estimation of the resolvent kernel functionsK

From Proposition 6.2, we see that it is possible to estimate the two-point correlation
function once we have some useful bounds for Kλ. Therefore, our goal is to establish
explicit upper and lower bounds for Kλ. To this end, we first prove a lemma which
strengthens Lemma 3.10.

Lemma 6.4 Let U ⊂ R
d be a bounded Lipschitz domain with the δ-cone property.

Let 0 < ε0 < 1 be defined by (3.12), and recall that, for each x ∈ U, V (x) is
the subset of U defined in (3.13). Then, there is a positive constant C such that the
following property holds: For any ε ∈ (0, ε0], for any x ∈ Uε, for any r , s such that
0 < r ≤ s ≤ ε0/2, for any z ∈ V (x) ∩ B(x, s), we have

Vol(V (x) ∩ B(x, s) ∩ B(z, r)) ≥ C(1 ∧ r)d . (6.8)
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Proof First, suppose that case (2) in (3.13) holds. Then for all z ∈ B(x, s) and 0 <

r ≤ s ≤ ε0/2, we have

V (x) ∩ B(x, s) ∩ B(z, r) = B(x, s) ∩ B(z, r).

This intersection clearly contains a ball of radius r/3, and hence has volume which is
bounded from below by C(r/3)d .

Suppose that case (1) in (3.13) holds. Let

C1 = {y ∈ R
d : 0 < |y| < 1 and y · ξ > |y| cos(ε0/2)}.

Note that C1 is a bounded convex domain, so it satisfies the δ̄-cone property for some
δ̄ > 0 by Proposition 2.4.4 of [27]. By scaling and translation, we see that

Vol(V (x) ∩ B(x, s) ∩ B(z, r)) = sd Vol
(
C1 ∩ B((z − x)/s, r/s)

)

with (z − x)/s ∈ C1 and 0 < r/s ≤ 1. So, it suffices to prove the existence of a
constant C > 0 such that

Vol(C1 ∩ B(w, r)) ≥ Crd , for all w ∈ C1 and r ∈ (0, 1]. (6.9)

To prove (6.9), we first consider the case that 0 < r ≤ δ̄. If dist(w, ∂C1) ≥ δ̄, then
B(w, r) ⊂ C1 and hence

Vol(C1 ∩ B(w, r)) = C1r
d .

If dist(w, ∂C1) < δ̄, thenw ∈ C1∩ B(v, δ̄) for some v ∈ ∂C1. By the δ̄-cone property
of C1, we can find a unit vector η = ηv ∈ R

d such that C (w, η, δ̄) ⊂ C1. Then,

Vol(C1 ∩ B(w, r))

≥ Vol(C (w, η, δ̄) ∩ B(w, r))

= Vol{y ∈ R
d : 0 < |y − w| < r and (y − w) · η ≥ |y − w| cos(ε0/2)}

≥ C2r
d .

Finally, consider the case that δ̄ < r ≤ 1. We have C1 ∩ B(w, r) ⊃ C1 ∩ B(w, δ̄).
Then, by the first case that we just proved,

Vol(C1 ∩ B(w, r)) ≥ (C1 ∧ C2)δ̄
d ≥ (C1 ∧ C2)δ̄

drd .

This completes the proof of Lemma 6.4. ��
Now, we are ready to establish upper and lower bounds for Kλ

D and Kλ
N .

Proposition 6.5 Let U be a bounded Lipschitz domain. Then:
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(i) There exist positive finite constants C, c, c′ such that for all t > 0, for all
x, x ′, y, y′ ∈ U,

Kλ
D(t, x, x ′, y, y′) ≤ Cλ2

1 ∧ td
e
−c1

(
|x−y|2

t + |x ′−y′ |2
t

)

e
2t

(
cλ2+c′λ

4
2−β −μ1

)

. (6.10)

(ii) For all ε > 0 small, there exist positive finite constants C, c, c̃ depending on ε

such that for all t > 0, for all x, x ′, y, y′ ∈ Uε,

Kλ
D(t, x, x ′, y, y′) ≥ Cλ2

1 ∧ td
e−16c2

|x−x ′ |2
t e

−12c2

(
|x−y|2

t + |x ′−y′ |2
t

)

e
2t

(
cλ2+c̃λ

4
2−β −μ1

)

(6.11)
and C → 0, c̄ → 0 and c̃ → 0 as ε → 0.

We first make a few remarks:

Remark 6.6

(1) Under the conditions of Proposition 6.2, for the delta initial condition ν = δy , we
have

(λlσ )−2 Kλ
D(t, x, x ′, y, y) ≤ E(u(t, x)u(t, x ′)) ≤ (λLσ )−2 Kλ

D(t, x, x ′, y, y).

(2) Proposition 6.5 applies to all bounded Lipschitz domains. But in case of C1,α-
domains, we will improve the bounds (6.10) and (6.11) in Proposition 7.2 so that
the moment estimates will be consistent with Dirichlet condition at the boundary,
namely,

lim
x or x ′→∂U

E(u(t, x)u(t, x ′)) = 0.

(3) In case of U = R
d , the factor exp(−c|x − x ′|2/t) in (6.11) also appears in the

lower bound in Lemma 2.7 of [14]. We think that a sharp upper bound for Kλ
D

would have this extra exponential factor as well.

Proof of Proposition 6.5

(i). We claim that, for all n ≥ 1, t > 0 and x, x ′, y, y′ ∈ U ,

G̃
n
D (t, x, x ′, y, y′) ≤ Cn e

−2μ1t

1 ∧ td
e
−c1

(
|x−y|2

t + |x ′−y′ |2
t

)

h̃n−1(t), (6.12)

where h̃n(t) is the iterated integral defined in Lemma 5.3. We prove this by induc-
tion. For n = 1, this follows from the upper bound in (3.6). Assume that (6.12)
holds for some n ≥ 1. Then, by the induction hypothesis, the upper bound in (3.6)
and Lemma 5.1(i),
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G̃
(n+1)
D (t, x, x ′, y, y′)

=
∫ t

0
ds

∫∫

U2
G̃D(t − s, x, x ′, z, z′)G̃
n

D (s, z, z′, y, y′) f (z − z′) dz dz′

≤ Cn
∫ t

0
ds h̃n−1(s)

∫∫

U2
dz dz′ G̃D(t − s, x, x ′, z, z′)e

−2μ1s

1 ∧ sd
e−c1

|z−y|2+|z′−y′ |2
s f (z − z′) dz dz′

≤ Cn+1 e
−2μ1t

1 ∧ td
e
−c1

(
|x−y|2

t + |x ′−y′ |2
t

) ∫ t

0
h̃n−1(s)

(
1 ∧ (t − s)s

t

)−β/2

ds

= Cn+1 e
−2μ1t

1 ∧ td
e
−c1

(
|x−y|2

t + |x ′−y′|2
t

)

h̃n(t).

This proves the claim (6.12). Then, by Lemmas 5.3 and 4.6,

Kλ
D(t, x, x ′, y, y′) =

∞∑

n=1

λ2nG̃
n
D (t, x, x ′, y, y′)

≤ Cλ2
e−2μ1t

1 ∧ td
e
−c1

(
|x−y|2

t + |x ′−y′ |2
t

) ∞∑

n=1

(Cλ2)n−1h̃n−1(t)

≤ C ′λ2 e
−2μ1t

1 ∧ td
e
−c1

(
|x−y|2

t + |x ′−y′ |2
t

)

e
t

(
cλ2+c′λ

4
2−β

)

.

This proves the upper bound (6.10).
(ii). Toprove the lower bound (6.11),weneed toderive lower bounds for G̃
n

D (t, x, x ′, y,
y′) for each n ≥ 1. Let t > 0 and x, x ′, y, y′ ∈ Uε. First, by the lower bounds
in (3.6) and (3.9),

G̃D(t, x, x ′, y, y′) ≥ C2
ε

e−2μ1t

1 ∧ td
e
−c2

(
|x−y|2

t + |x ′−y′ |2
t

)

.

For n = 2, we have

G̃
2
D (t, x, x ′, y, y′) ≥

∫ t/2

t/4
ds

∫∫

[V (x)∩B(x,
√
t)]2

dz dz′

× G̃D(t − s, x, x ′, z, z′) f (z − z′)G̃D(s, z, z′, y, y′),

where V (x) ⊂ U is defined in (3.13). By (3.6), for t/4 < s < t/2, we have

G̃D(t − s, x, x ′, z, z′) ≥ C2
2 (1 ∧ 
1(x))

(
1 ∧ 
1(x

′)
)
(1 ∧ 
1(z))

(
1 ∧ 
1(z

′)
)

× e−2μ1(t−s)

1 ∧ (t − s)d
e−c2

|x−z|2+|x ′−z′ |2
t/2
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and

G̃D(s, z, z′, y, y′) ≥ C2
2 (1 ∧ 
1(z))

(
1 ∧ 
1(z

′)
)
(1 ∧ 
1(y))

(
1 ∧ 
1(y

′)
)

× e−2μ1s

1 ∧ sd
e−c2

|z−y|2+|z′−y′ |2
t/4 .

For z, z′ ∈ V (x)∩ B(x,
√
t), by the triangle inequality and Cauchy–Schwarz inequal-

ity, we have

|x − z|2 + |x ′ − z′|2 ≤ |x − z|2 + 2(|x ′ − x |2 + |x − z′|2)
≤ 2|x − x ′|2 + 3t

and

|z − y|2 + |z′ − y′|2 ≤ 2(|z − x |2 + |x − y|2)
+ 3(|z′ − x |2 + |x − x ′|2 + |x ′ − y′|2)

≤ 5t + 2|x − y|2 + 3|x ′ − y′|2 + 3|x − x ′|2.

By applying the bounds above, (3.9) and Lemma 3.10, we get that

G̃
2
D (t, x, x ′, y, y′) ≥ C4

ε

e−2μ1t

1 ∧ td
e−16c2

|x−x ′ |2
t e−12c2

|x−y|2+|x ′−y′ |2
t t1−β/2.

For n ≥ 2, expanding G̃
(n+1)
D in its full integral form, we have

G̃
(n+1)
D (t, x, x ′, y, y′)

≥
∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sn−2

0
dsn−1

∫ sn−1

0
dsn

×
∫∫

U2
dz1 dz

′
1 G̃D(t − s1, x, x

′, z1, z′1) f (z1 − z′1)

×
∫∫

U2
dz2 dz

′
2 G̃D(s1 − s2, z1, z

′
1, z2, z

′
2) f (z2 − z′2)

× · · · ×
∫∫

U2
dzn−1 dz

′
n−1 G̃D(sn−2 − sn−1, zn−2, z

′
n−2, zn−1, z

′
n−1) f (zn−1 − z′n−1)

×
∫∫

U2
dzn dz

′
n G̃D(sn−1 − sn, zn−1, z

′
n−1, zn, z

′
n) f (zn − z′n)G̃D(sn, zn, z

′
n, y, y

′).
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Then, we derive a lower bound by integrating on the smaller intervals

s1 ∈
[(

1 − 1

4n

)
t

2
,
t

2

]
,

s2 ∈
[(

1 − 1

2n

)
t

2
, s1 − t

8n

]
,

s3 ∈
[(

1 − 2

2n

)
t

2
, s2 − (s1 − s2)

]
,

...

sn ∈
[(

1 − n − 1

2n

)
t

2
, sn−1 − (sn−2 − sn−1)

]
.

(6.13)

Let 0 < ε0 < 1 be given by (3.12). For each ε ∈ (0, ε0) and x ∈ Uε, recall the subset
V (x) ⊂ U defined by (3.13). Consider

z1, z
′
1 ∈ A1 := V (x) ∩ B(x,

√
(t − s1)/(5n) ∧ (ε0/2)),

z2 ∈ A2 := V (x) ∩ B(x,
√
s1 − s2 ∧ (ε0/2)) ∩ B(z1,

√
s1 − s2 ∧ (ε0/2)),

z′2 ∈ A′
2 := V (x) ∩ B(x,

√
s1 − s2 ∧ (ε0/2)) ∩ B(z′1,

√
s1 − s2 ∧ (ε0/2)),

...

zn ∈ An := V (x) ∩ B(x,
√
sn−1 − sn ∧ (ε0/2)) ∩ B(zn−1,

√
sn−1 − sn ∧ (ε0/2)),

z′n ∈ A′
n := V (x) ∩ B(x,

√
sn−1 − sn ∧ (ε0/2)) ∩ B(z′n−1,

√
sn−1 − sn ∧ (ε0/2)).

Note that by (6.13), we have (t − s1)/(5n) ≤ t/(8n) ≤ s1 − s2 ≤ s2 − s3 ≤
· · · ≤ sn−1 − sn , which ensures that for 2 ≤ i ≤ n, both zi−1 and z′i−1 lie in
V (x) ∩ B(x,

√
si−1 − si ∧ (ε0/2)). Then, by Lemma 6.4, for 2 ≤ i ≤ n,

Vol(Ai ) ∧ Vol(A′
i ) ≥ C(

√
si−1 − si ∧ (ε0/2))

d ≥ C(ε0/2)
d((si−1 − si ) ∧ 1)d/2.

By Lemma 3.10 and (3.9), we have

Vol(A1) ≥ C

(√
t − s1
5n

∧ (ε0/2)

)d

≥ C(ε0/2)
d(5n)−d/2((t − s1) ∧ 1)d/2,

1 ∧ 
1(z) ≥ 1 ∧ (c−1
0 εa1) for all z ∈ V (x).

Also, on A1 × A1, we have f (z1 − z′1) ≥ C(((t − s1)/n) ∧ 1)−β/2, and on Ai × A′
i ,

where 2 ≤ i ≤ n, we have f (zi − z′i ) ≥ C((si−1 − si ) ∧ 1)−β/2. Then, by the lower
bound in (3.6) and the inequalities

|zn − zn−1|2 + |z′n − z′n−1|2 ≤ 2(sn−1 − sn),

|zn − y|2 + |z′n − y′|2 ≤ 5(sn−1 − sn) + 2|x − y|2 + 3|x ′ − y′|2 + 3|x − x ′|2,
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we have

∫∫

An×A′
n

dzn dz
′
n G̃D(sn−1 − sn, zn−1, z

′
n−1, zn, z

′
n) f (zn − z′n)G̃D(sn, zn, z

′
n, y, y

′)

≥ C4
ε e

−2μ1sn−1(1 ∧ (sn−1 − sn))
− β

2
1

1 ∧ td
e−c2

3|x−x ′ |2+3|x−y|2+3|x ′−y′|2+5sn−1
sn .

For i = 2, . . . , n − 1, by |zi − zi−1|2 + |z′i − z′i−1|2 ≤ 2(si−1 − si ), we have

∫∫

Ai×A′
i

dzi dz
′
i G̃D(si−1 − si , zi−1, z

′
i−1, zi , z

′
i ) f (zi − z′i )

≥ C2
ε e

−2μ1(si−1−si )(1 ∧ (si−1 − si ))
− β

2 .

For i = 1, by the inequality

|z1 − x |2 + |z′1 − x ′|2 ≤ 3(t − s1) + 2|x − x ′|2,

we have

∫∫

A1×A1

dz1 dz
′
1 G̃D(t − s1, x, x

′, z1, z′1) f (z1 − z′1)

≥ C2
ε

nd/2 e
−2μ1(t−s1)e

−2c2
|x−x ′ |2
t−s1

(
1 ∧ t − s1

n

)− β
2

.

Combining these estimates and using (4.14), we get that

G̃
(n+1)
D (t, x, x ′, y, y′)

≥ C2(n+1)
ε

e−2μ1t

1 ∧ td

∫ t
2

(1− 1
4n ) t

2

ds1

(
1 +

(
t − s1
n

)− β
2
)
e
−2c2

|x−x ′|2
t−s1

×
∫ s1− t

8n

(1− 1
2n ) t

2

ds2
(
1 + (s1 − s2)

− β
2

)
×

∫ s2−(s1−s2)

(1− 2
2n ) t

2

ds3
(
1 + (s2 − s3)

− β
2

)
× · · ·

· · · ×
∫ sn−2−(sn−3−sn−2)

(1− n−2
2n ) t

2

dsn−1

(
1 + (sn−2 − sn−1)

− β
2

)

×
∫ sn−1−(sn−2−sn−1)

(1− n−1
2n ) t

2

dsn
(
1 + (sn−1 − sn)

− β
2

)
e−c2

3|x−x ′|2+3|x−y|2+3|x ′−y′ |2+5t
t/4 .

Let I denote the above multiple integral for s1, . . . , sn . By (6.13), we have si−1− si ≥
t
8n and si−1 − (1 − i

2n ) t2 ≥ (1 − i−1
2n ) t2 − (1 − i

2n ) t2 = t
4n for 2 ≤ i ≤ n. Fixing

s1 ∈ [(
1 − 1

4n

) t
2 ,

t
2

]
, by the change of variables sn �→ sn−1−sn , sn−1 �→ sn−2−sn−1,
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. . . , s2 �→ s1 − s2, we have

sn ∈
[
sn−2 − sn−1, sn−1 −

(
1 − n − 1

2n

)
t

2

]
⊃

[
t

8n
,
t

4n

]
,

...

s3 ∈
[
s1 − s2, s2 −

(
1 − 2

2n

)
t

2

]
⊃

[
t

8n
,
t

4n

]
,

s2 ∈
[

t

8n
, s1 −

(
1 − 1

2n

)
t

2

]
⊃

[
t

8n
,
t

4n

]
.

It follows that

I ≥ e−10c2e−16c2
|x−x ′ |2

t e−12c2
|x−y|2+|x ′−y′ |2

t

×
∫ t

2

(1− 1
4n ) t

2

ds1

(
1 +

(
t − s1
n

)− β
2
)

×
∫ t

4n

t
8n

ds2

(
1 + s

− β
2

2

)
× · · ·

×
∫ t

4n

t
8n

dsn−1

(
1 + s

− β
2

n−1

)
×

∫ t
4n

t
8n

dsn

(
1 + s

− β
2

n

)

=: e−10c2e−16c2
|x−x ′ |2

t e−12c2
|x−y|2+|x ′−y′|2

t

n∏

i=1

Ii .

The above ds2 · · · dsn integrals can be evaluated explicitly, which is equal to

n∏

i=2

Ii =
⎛

⎝ t

8n
+

( t
4n

)1− β
2 − ( t

8n

)1− β
2

1 − β
2

⎞

⎠
n−1

≥ cn−1
(
t

n

)n−1
(
1 +

(
t

n

)− β
2
)n−1

.

As for the ds1 integral, we have that

I1 ≥
∫ t

2

(1− 1
4n ) t

2

ds1

(
1 +

(
t − t/2

n

)− β
2
)

≥ c
t

n

(
1 +

(
t

n

)− β
2
)

.

Therefore, we see that

I ≥ cnn−β/2e−10c2e−16c2
|x−x ′|2

t e−12c2
|x−y|2+|x ′−y′|2

t

(
t

n

)n
(
1 +

(
t

n

)−β/2
)n

= cnn−β/2e−10c2e−16c2
|x−x ′ |2

t e−12c2
|x−y|2+|x ′−y′|2

t

n∑

k=0

n!
k!(n − k)!

(
t

n

)n−kβ/2

.
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By Stirling’s formula, nkβ/2

nn ≥ Cn (k!)β/2

n! for all k = 0, 1, . . . , n and n ≥ 2. It follows
that

G̃
(n+1)
D (t, x, x ′, y, y′) ≥ C2(n+1)

ε cn
e−2μ1t

1 ∧ td
e−16c2

|x−x ′ |2
t e−12c2

|x−y|2+|x ′−y′ |2
t

n∑

k=0

tn−kβ/2

(n − k)!(k!)1−β/2 .

Finally, recalling the definition of Kλ
D , interchanging the order of summation, and

using (4.11), we get that

Kλ
D(t, x, x ′, y, y′)

= λ2
∞∑

n=0

λ2nG̃
(n+1)
D (t, x, x ′, y, y′)

≥ C2
ε λ2

e−2μ1t

1 ∧ td
e−16c2

|x−x ′ |2
t e−12c2

|x−y|2+|x ′−y′|2
t

∞∑

n=0

(C2
ε cλ

2t)
n

n∑

k=0

t−kβ/2

(n − k)!(k!)1−β/2

≥ C2
εCλ2

e−2μ1t

1 ∧ td
e−16c2

|x−x ′|2
t e−12c2

|x−y|2+|x ′−y′|2
t e

t

(
Kλ2+K ′λ

4
2−β

)

.

The proof of Proposition 6.5 is complete. ��
Proposition 6.7 Let U be a bounded Lipschitz domain. Then:

(i) There exist positive finite constants C, c, c′ such that for all t > 0, for all
x, x ′, y, y′ ∈ U,

Kλ
N (t, x, x ′, y, y′) ≤ Cλ2

1 ∧ td
e
−c3

(
|x−y|2

t + |x ′−y′|2
t

)

e
t

(
cλ2+c′λ

4
2−β

)

. (6.14)

(ii) If U is convex (or if (3.8) holds), then there exist positive finite constants C, c, c̃
such that for all t > 0, for all x, x ′, y, y′ ∈ U,

Kλ
N (t, x, x ′, y, y′) ≥ Cλ2

1 ∧ td
e−16c4

|x−x ′|2
t e

−12c4

(
|x−y|2

t + |x ′−y′ |2
t

)

e
t

(
cλ2+c̃λ

4
2−β

)

.

(6.15)

Proof The proof is similar to that of Lemma 6.5. ��

6.3 Proof of Theorem 1.5

Proof of Theorem 1.5 The correlation bounds (1.22) and (1.23) under Dirichlet condi-
tion (or Neumann condition, respectively) follows immediately from Propositions 6.2
and 6.5 (or 6.2 and 6.7, respectively). ��
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7 The case of bounded C1,˛-domains with Dirichlet condition and
some variations

In the case of C1,α-domains, one can expect better moment estimates under Dirichlet
boundary condition because the heat kernel estimates in (3.6) hold with a1 = a2 =
1. This implies that the Dirichlet heat kernel estimates in (3.6) are sharp, yielding

matching upper and lower bounds with the same factor
(
1 ∧ 
1(x)

1∧t1/2
) (

1 ∧ 
1(y)
1∧t1/2

)
.

7.1 Better estimates for the resolvent kernelK

In this part, we study the case of bounded C1,α-domains with Dirichlet boundary
condition. For the points x, x ′, y, y′ that are close to ∂U , the lemma below provides
more precise estimate than what one gets from the upper bound in Lemma 5.1.

Lemma 7.1 IfU is a boundedC1,α-domain for someα > 0, then there exists a positive
finite constant C such that for all t > 0, for all x, x ′, y, y′ ∈ U,

∫ t

0
ds

∫∫

U2
dz dz′ �(t − s, x)�(t − s, x ′)�(t − s, z)�(t − s, z′)

e−2μ1(t−s)

1 ∧ (t − s)d
e−c1

|x−z|2+|x ′−z′ |2
t−s

× f (z − z′)�(s, z)�(s, z′)�(s, y)�(s, y′)e
−2μ1s

1 ∧ sd
e− 2c1

3
|z−y|2+|z′−y′|2

s

≤ C�(t, x)�(t, x ′)�(t, y)�(t, y′)e
−2μ1t

1 ∧ td
e− 2c1

3
|x−y|2+|x ′−y′ |2

t

∫ t

0

(
1 ∧ (t − s)s

t

)−β/2

ds, (7.1)

where �(t, x) is as defined in (1.24).

Proof We first derive the following bound: for all s, r > 0 and v,w ∈ U ,

�(s, v)�(r , w)e− c1
6

|v−w|2
r ≤ C0�(s, w). (7.2)

Since U is a C1,α-domain for some α > 0, (3.9) holds with a1 = a2 = 1. By (3.9)
and the triangle inequality,


1(v) ≤ c0(dist(w, ∂U ) + |v − w|) ≤ c20
1(w) + c0|v − w|.

It follows that

�(s, v) = 1 ∧ 
1(v)

1 ∧ s1/2
≤ 1 ∧

(
c20
1(w) + c0|v − w|


1(w)
· 
1(w)

1 ∧ s1/2

)

123



Stoch PDE: Anal Comp

≤
(
c20 + c0|v − w|


1(w)

)
�(s, w).

Thus,

�(s, v)�(r , w) ≤
(
c20 + c0|v − w|


1(w)

)(
1 ∧ 
1(w)

1 ∧ r1/2

)
�(s, w)

≤
(
c20 + c0|v − w|

1 ∧ r1/2

)
�(s, w).

Moreover, since the function xe−x2 is bounded, we have

�(s, v)�(r , w)e− c1
6

|v−w|2
r ≤

(
c20 + c0|v − w| + c0|v − w|

r1/2
e− c1

6
|v−w|2

r

)
�(s, w)

≤ C0�(s, w),

where C0 is a finite constant depending on c0, c1 and the diameter of U . This
proves (7.2).

In order to prove the lemma, we split the integral over [0, t] into the sum of the
integral over [t/2, t] and the integral over [0, t/2]. Denote these two integrals by I1
and I2, respectively. By (7.2), we have the following two bounds

�(t − s, x)�(s, z)e− c1
3

|x−z|2
t−s ≤ C0�(s, x),

�(t − s, x ′)�(s, z′)e− c1
3

|x ′−z′ |2
t−s ≤ C0�(s, x ′).

These bounds and �(t − s, z)�(t − s, z′) ≤ 1 imply that

I1 ≤ C2
0

∫ t

t/2
ds �(s, x)�(s, x ′)�(s, y)�(s, y′)

×
∫∫

U2
dz dz′ e−2μ1(t−s)

1 ∧ (t − s)d
e− 2c1

3
|x−z|2+|x ′−z′ |2

t−s f (z − z′)e
−2μ1s

1 ∧ sd
e− 2c1

3
|z−y|2+|z′−y′|2

s .

Then, using the bound �(s, x) ≤ �(t/2, x) ≤ √
2�(t, x) for t/2 ≤ s ≤ t and

Lemma 5.1, we obtain

I1 ≤ C�(t, x)�(t, x ′)�(t, y)�(t, y)
e−2μ1t

1 ∧ td
e− 2c1

3
|x−y|2+|x ′−y′|2

t

∫ t

t/2

(
1 ∧ (t − s)s

t

)−β/2

ds.

For I2, we use the bounds

�(t − s, z)�(s, y)e− c1
6

|z−y|2
s ≤ C0�(t − s, y),
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�(t − s, z′)�(s, y′)e− c1
6

|z′−y′|2
s ≤ C0�(t − s, y′),

and �(s, z)�(s, z′) ≤ 1 to get that

I2 ≤ C2
0

∫ t/2

0
ds �(t − s, x)�(t − s, x ′)�(t − s, y)�(t − s, y′)

×
∫∫

U2
dz dz′ e−2μ1(t−s)

1 ∧ (t − s)d
e−c1

|x−z|2+|x ′−z′ |2
t−s f (z − z′)e

−2μ1s

1 ∧ sd
e−c1

|z−y|2+|z′−y′ |2
2s .

For 0 ≤ s ≤ t/2, we apply the identity (5.1) with t and s replaced by t ′ = t + s and
s′ = 2 s respectively, and with v = z − x and w = y − x . This gives

e−c1
|x−z|2+|x ′−z′ |2

t−s e−c1
|z−y|2+|z′−y′ |2

2s

= e−c1
|x−y|2+|x ′−y′ |2

t+s e−c1
|(z−x)− t ′−s′

t ′ (y−x)|2+|(z′−x ′)− t ′−s′
t ′ (y′−x ′)|2

τ ′

≤ e− 2c1
3

|x−y|2+|x ′−y′|2
t e−c1

|(z−x)− t ′−s′
t ′ (y−x)|2+|(z′−x ′)− t ′−s′

t ′ (y′−x ′)|2
τ ′ ,

where τ ′ = (t ′ − s′)s′/t ′. It is easy to see that for 0 ≤ s ≤ t/2,

(1 ∧ τ ′)d−β/2 ≤ 2d
(
1 ∧ (t − s)s

t

)d−β/2

.

Hence, we can follow the proof of Lemma 5.1(i) and use the bound �(t − s, x) ≤√
2�(t, x) for 0 ≤ s ≤ t/2 to deduce that

I2 ≤ C ′�(t, x)�(t, x ′)�(t, y)�(t, y)
e−2μ1t

1 ∧ td
e− 2c1

3
|x−y|2+|x ′−y′ |2

t

∫ t/2

0

(
1 ∧ (t − s)s

t

)−β/2

ds.

The proof of Lemma 7.1 is complete. ��

We can now strengthen the bounds (6.10) and (6.11) for Kλ
D(t, x, x ′, y, y′) in the

case of bounded C1,α-domains. Note that �(t, x) = 0 for all x ∈ ∂U , hence (7.3)
and (7.4) below provide more precise estimates than (6.10) and (6.11) for x, x ′, y, y′
that are close to ∂U .

Proposition 7.2 If U is a bounded C1,α-domain for some α > 0. Then:
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(i) There exist positive finite constants C, c, c′ such that for all t > 0 and x, x ′, y, y′ ∈
U,

Kλ
D(t, x, x ′, y, y′) ≤ Cλ2

1 ∧ td
�(t, x)�(t, x ′)�(t, y)�(t, y′)

× e
− 2c1

3

(
|x−y|2

t + |x ′−y′|2
t

)

e
2t

(
cλ2+c′λ

4
2−β −μ1

)

.

(7.3)

(ii) There exist positive finite constants C̄, c̄, c̃ such that for all t > 0, for all
x, x ′, y, y′ ∈ U,

Kλ
D(t, x, x ′, y, y′) ≥ C̄λ2

1 ∧ td
�(t, x)�(t, x ′)�(t, y)�(t, y′)

× e−16c2
|x−x ′ |2

t e
−12c2

(
|x−y|2

t + |x ′−y′ |2
t

)

e
2t

(
c̄λ2+c̃λ

4
2−β

−μ1
)

.

(7.4)

Proof

(i). Similarly to the proof of Proposition 6.5(i), the upper bound (7.3) can be proved
by applying Lemmas 7.1, 5.3 and 4.6.

(ii). To prove the lower bound (7.4), we claim that for each n ≥ 0,

G̃
(n+1)
D (t, x, x ′, y, y′)
≥ Cn+1�(t, x)�(t, x ′)�(t, y)�(t, y′)

× e−2μ1t

1 ∧ td
e−16c2

|x−x ′ |2
t e−12c2

|x−y|2+|x ′−y′|2
t

n∑

k=0

tn−kβ/2

(n − k)!(k!)1−β/2 .

(7.5)

Indeed, for n = 0, (7.5) follows from Proposition 3.6(i). For n ≥ 1, we can prove (7.5)
by modifying the proof in Proposition 6.5(ii) and we outline the major changes as
follows. Instead of V (x) defined in (3.13), we now consider

Ṽ (x) =
{
C (x + (ε0/4)ξyi , ξyi , ε0/4) in case (1) of (3.13),

B(x, ε0/4) in case (2) of (3.13),

so that Ṽ (x) ⊂ V (x) ⊂ U and there exists δ0 > 0 such that for all x ∈ U , for all
z ∈ Ṽ (x), dist(z, ∂U ) ≥ δ0. Hence, (3.9) implies that

inf
x∈U inf

z∈Ṽ (x)

1(z) ≥ c−1

0 δ0 > 0. (7.6)

For any x ∈ U , define x̃ by

x̃ =
{
x + (ε0/4)ξyi in case (1) of (3.13),

x in case (2) of (3.13).
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Then, as in Lemma 6.4, we can show that there exists C0 > 0 such that for all t > 0,
for all x ∈ U , for all 0 ≤ r ≤ s ≤ ε0/4, for all z ∈ Ṽ (x) ∩ B(x̃, s),

Vol(Ṽ (x) ∩ B(x̃, s) ∩ B(z, r)) ≥ C0(1 ∧ r)d . (7.7)

For n = 1, similarly to the proof in Proposition 6.5(ii), we have

G̃
2
D (t, x, x ′, y, y′)

≥
∫ t/2

t/4
ds

∫∫

[Ṽ (x)∩B(x̃,
√
t)]2

dz dz′ G̃D(t − s, x, x ′, z, z′) f (z − z′)G̃D(s, z, z′, y, y′)

≥ C�(t, x)�(t, x ′)�(t, y)�(t, y′) e−2μ1t

(1 ∧ td)2
e−16c2

|x−x ′ |2
t e−12c2

|x−y|2+|x ′−y′ |2
t

×
∫ t/2

t/4
ds

∫∫

[Ṽ (x)∩B(x̃,
√
t)]2

dz dz′ (1 ∧ 
1(z))
2(1 ∧ 
1(z

′))2|z − z′|−β .

Then, by using (7.6) and (7.7), we obtain (7.5) for n = 1.
For n ≥ 2, we first restrict the integrals of s1, s2, s3, . . . , sn to the smaller

intervals
[
(1 − 1

4n ) t2 ,
t
2

]
,
[
(1 − 1

2n ) t2 , s1 − t
8n

]
,
[
(1 − 2

2n ) t2 , s2 − (s1 − s2)
]
, . . . ,[

(1 − n−1
2n ) t2 , sn−1 − (sn−1 − sn−1)

]
, respectively, so that t−s1

5n ≤ t
8n ≤ s1 − s2 ≤

s2 − s3 ≤ · · · ≤ sn−1 − sn . We can then modify the proof of Proposition 6.5(ii) by
considering

z1, z
′
1 ∈ A1 := Ṽ (x) ∩ B(x̃,

√
(t − s1)/(5n) ∧ (ε0/4)),

z2 ∈ A2 := Ṽ (x) ∩ B(x̃,
√
s1 − s2 ∧ (ε0/4)) ∩ B(z1,

√
s1 − s2 ∧ (ε0/4)),

z′2 ∈ A′
2 := Ṽ (x) ∩ B(x̃,

√
s1 − s2 ∧ (ε0/4)) ∩ B(z′1,

√
s1 − s2 ∧ (ε0/4)),

...

zn ∈ An := Ṽ (x) ∩ B(x̃,
√
sn−1 − sn ∧ (ε0/4)) ∩ B(zn−1,

√
sn−1 − sn ∧ (ε0/4)),

z′n ∈ A′
n := Ṽ (x) ∩ B(x̃,

√
sn−1 − sn ∧ (ε0/4)) ∩ B(z′n−1,

√
sn−1 − sn ∧ (ε0/4)).

Then, along the lines of the proof of Proposition 6.5(ii), we can deduce (7.5) using (7.6)
and (7.7) above.

Finally, recall that

Kλ
D(t, x, x ′, y, y′) = λ2

∞∑

n=0

λ2nG̃
(n+1)
D (t, x, x ′, y, y′).

By using (7.5), interchanging the order of summation, and using (4.11), we can obtain
the lower bound (7.4) as in the proof of Proposition 6.5(ii). This completes the proof
of Proposition 7.2. ��
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7.2 Proof of Theorem 1.7

Proof of Theorem 1.7 In Remark 1.8, we have seen that ν satisfies condition (1.25) if
and only if J ∗

2c1/3
(t, x) < ∞ for all t > 0 and x ∈ U . The proof of the existence, p-th

moment bounds and uniqueness of the solution is similar to the proof of Theorem 1.4
in Sect. 5, with the use of Lemma 7.1 instead of Lemma 5.1 (i). The correlation bounds
follow immediately from Propositions 6.2 and 7.2. ��

7.3 Proof of corollary 1.9

Proof of Corollary 1.9 Note that the Dirichlet kernel kernel forL on U = ∏m
i=1Ui is

given by

GU
D(t, x, y) =

m∏

i=1

GUi
D (t, xi , yi )

for t > 0 and x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ U , where GUi
D (t, xi , yi ) is the

Dirichlet heat kernel forLi on the C1,αi -domainUi . This and Proposition 3.6 applied
to each GUi

D (t, xi , yi ) imply the following heat kernel estimate

GU
D(t, x, y) ≤ C1�

∗(t, x)�∗(t, y) e−μ1t

1 ∧ td/2 e
−c1

|x−y|2
t

with suitable constants C1 and c1, where �∗ is as defined in (1.32) and μ1 is the
sum of the leading eigenvalues of the Dirichlet operatorsLi . By the proof of (7.2) in
Lemma 7.1, for each i , we have

(
1 ∧ 


Ui
1 (vi )

1 ∧ s1/2

)(
1 ∧ 


Ui
1 (wi )

1 ∧ r1/2

)
e− c1

6
|vi−wi |2

r ≤ C0,i

(
1 ∧ 


Ui
1 (wi )

1 ∧ s1/2

)

for all s, r > 0 and vi , wi ∈ Ui , where C0,i is a constant. Taking products over
i ∈ {1, . . . ,m} gives

�∗(s, v)�∗(r , w)e− c1
6

|v−w|2
r ≤ C0�

∗(s, w)

for all s, r > 0 and v,w ∈ U , where C0 = ∏m
i=1 C0,i . Then, the same proof of

Lemma 7.1 shows that the estimate (7.1) holds with every � replaced by �∗. This
implies that the estimate (7.3) also holds with every � replaced by �∗. Using these
estimates, the statements (i) and (ii) in Theorem 1.7 with � replaced by �∗ can
be proved for the product domain the same way they are proved in Theorem 1.7.
Condition (1.31) ensures that J ∗

c (t, x) < ∞ for all t > 0 and x ∈ U . ��
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7.4 Some auxiliary results related to examples in Sect. 2.1

Lemma 7.3 For ν > −1, let Jν(·) be the Bessel function of first kind and of order ν

and let z0 be any positive zero of Jν(·). Then,

sup
r∈(0,1)

r−ν Jν(r z0)

1 − r
< ∞.

Proof Set f (r) = r−ν Jν (r z0)
1−r , which is a continuous function on (0, 1). By Eq. 10.7.3

of [34], we see that limr→0 f (r) = �(ν)−1
( z0
2

)ν
< ∞. Because all zeros of Jν(·)

are simple (see Section 10.21 ibid), we see that limr→1 f (r) = −z0 J ′
ν(z0) < ∞.

Therefore, f (r) is a continuous function on [0, 1], from which the desired result
follows. ��
Remark 7.4 In the setting of Example 2.2, the leading eigenfunction is given by


1(x) = 1

Cd
|x |(2−d)/2 J(d−2)/2 (z0|x |) ,

where z0 is the first positive zero of the Bessel function J(d−2)/2(x), and Cd is some
normalization constant. One may refer to §34.2 in Chapter III of [42] for the case
d = 2 and Section H in Chapter 2 of [21] for the general case d ≥ 3. In particular,
the leading eigenfunction 
1(x) corresponds to Flm

k (x) in Theorem 2.66 (ibid.) with
k = 0, l = 1 and m = 1. Here are a few comments:

(1) The multiplicity for the leading eigenvalue z0 is one since dk = 1; see Corollary
2.55 (ibid.).

(2) Y 1
0 (x) in Theorem 2.66 (ibid.) is a constant function.

(3) In Fig. 2(2.2), we have chosen the following normalization constant:

Cd = lim
r→0

r (2−d)/2 J(n−2)/2(z0r) = 2−d/2d � (1 + d/2)−1 z(d−2)/2
0 , (7.8)

where the limit is due to [34, Eq. 10.7.3 on p. 223], so that max|x |≤1 �(1, x) = 1.

The following Lemma is used in Example 2.3.

Lemma 7.5 R1 and R2 are two simple zeros for Z(r) defined in Example 2.3.

Proof It is straightforward to check that R1 and R2 are two zeros of Z(r). To show that
they are simple, one needs to prove that Z ′(r) �= 0 for r = R1 and R2. By Eq. 10.6.3
of [34], we see that

z−1
0 Z ′(r) = J0(R1z0)Y

′
0(r z0) − J ′

0(r z0)Y0(R1z0)

= −J0(R1z0)Y1(r z0) + J1(r z0)Y0(R1z0).
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Table 3 Three cases in the proof of Lemma 7.5

(a) Case 1. (b) Case 2. (c) Case 3.
J0 J1 Y0 Y1 J0 J1 Y0 Y1 J0 J1 Y0 Y1

R1z0 �= 0 — = 0 �= 0 R1z0 = 0 �= 0 �= 0 — R1z0 �= 0 — �= 0 —

R2z0 �= 0 — = 0 �= 0 R2z0 = 0 �= 0 �= 0 — R2z0 �= 0 — �= 0 —

By setting r = R1 and applying Eq. 10.5.2 (ibid.), we have that

z−1
0 Z ′(R1) = −J0(R1z0)Y1(R1z0) + J1(R1z0)Y0(R1z0) = 2

πR1z0
�= 0,

which proves that R1 is a simple zero of Z(r).
Let F(z) denote the function in (2.7). By setting r = R2, we have

z−1
0 Z ′(R2) = −J0(R1z0)Y1(R2z0) + J1(R2z0)Y0(R1z0). (7.9)

Because J 20 (z) + Y 2
0 (z) > 0 for all z > 0 (see, e.g., Eq. 10.9.30 ibid), we see that if

Y0(R1z0) = 0, then J0(R1z0) �= 0. Because all zeros of Yν(·) are simple, we see that
Y1(R1z0) = −Y ′

0(R1z0) �= 0. But since z0 is a zero of F(z), i.e.,

0 = J0(R1z0)Y0(R2z0) − J0(R2z0)Y0(R1z0) = J0(R1z0)Y0(R2z0).

Hence Y0(R2z0) = 0, which further implies that both J0(R2z0) �= 0 and Y1(R2z0) =
−Y ′

0(R2z0) �= 0. This proves Case 1 in Table 3a. Applying the same arguments with
Y0(R1z0) = 0 replaced by Y0(R2z0) = 0, J0(R1z0) = 0, and J0(R2z0) = 0, we see
that only three cases can happen, which are listed in the following Table 3:
Cases 1 and 2: From the expression of Z ′(R2) in (7.9), we see that in these two cases,
Z ′(R2) �= 0.
Case 3: Since both Y0(R1z0) and Y0(R2z0) are nonzero, and since F(z0) = 0, we see
that

J0(R1z0) = Y0(R1z0)J0(R2z0)

Y0(R2z0)
.

This and Eq. 10.5.2 (ibid.) imply that

z−1
0 Z ′(R2) = Y0(R1z0)

Y0(R2z0)
(−J0(R2z0)Y1(R2z0) + J1(R2z0)Y0(R2z0))

= Y0(R1z0)

Y0(R2z0)

2

πR2z0
�= 0.

Therefore, combining the above three cases, we have proved that R2 is a simple zero
of Z(r). ��
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